找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: GERM
51#
發(fā)表于 2025-3-30 12:13:00 | 只看該作者
Flows, importance, we shall discuss network flows in considerable depth. In particular, we will give detailed presentations of four of the most important algorithms solving this problem, namely the labelling algorithm of Ford and Fulkerson, the algorithm of Dinic, the MKM-algorithm, and the preflow-push algorithm of Goldberg and Tarjan.
52#
發(fā)表于 2025-3-30 16:26:51 | 只看該作者
Combinatorial Applications,l alternative approach of taking Philip Hall’s marriage theorem—which we will treat in Sect.?.—as the starting point of transversal theory, this way of proceeding has a distinct advantage: it also yields algorithms allowing explicit constructions for the objects in question.
53#
發(fā)表于 2025-3-30 16:57:00 | 只看該作者
Matchings,n in the bipartite case. We shall also present the most important theoretical results on matchings in general graphs: the 1-factor theorem of Tutte characterizing the graphs with a prefect matching, the more general Berge-Tutte formula giving the size of a maximal matching, and the Gallai-Edmonds structure theory.
54#
發(fā)表于 2025-3-31 00:40:07 | 只看該作者
https://doi.org/10.1007/978-3-531-91853-2c digraphs. At the end of the chapter we consider a class of apparently very difficult problems (the so-called NP-complete problems) which plays a central role in complexity theory; we will meet this type of problem over and over again in this book.
55#
發(fā)表于 2025-3-31 04:53:28 | 只看該作者
M?dchenfreundschaften in der AdoleszenzBFS), namely depth first search—which may also be thought of as a strategy for traversing a maze. In addition, we present various theoretical results, such as characterizations of 2-connected graphs and of edge connectivity.
56#
發(fā)表于 2025-3-31 07:31:40 | 只看該作者
Algorithms and Complexity,c digraphs. At the end of the chapter we consider a class of apparently very difficult problems (the so-called NP-complete problems) which plays a central role in complexity theory; we will meet this type of problem over and over again in this book.
57#
發(fā)表于 2025-3-31 11:09:16 | 只看該作者
Connectivity and Depth First Search,BFS), namely depth first search—which may also be thought of as a strategy for traversing a maze. In addition, we present various theoretical results, such as characterizations of 2-connected graphs and of edge connectivity.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜春市| 若尔盖县| 平武县| 天祝| 塔城市| 乌审旗| 灵丘县| 萝北县| 西和县| 宝丰县| 乌鲁木齐县| 利川市| 宜良县| 黄浦区| 洛南县| 黄山市| 双柏县| 峨边| 安徽省| 留坝县| 文水县| 本溪市| 盘锦市| 虎林市| 兰考县| 通城县| 海阳市| 滕州市| 于都县| 雅安市| 湛江市| 武宣县| 新乡市| 沈阳市| 玛纳斯县| 吴忠市| 曲靖市| 新昌县| 定州市| 玉林市| 桂平市|