找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Twisted Duality, Cycle Family Graphs, and Embedded Graph Equivalence,ality? (2) How is a hierarchy of graph equivalences captured by a hierarchy of twisted dualities? We construct cycle family graphs and show that they fully characterise all twisted duals with a given (abstract) medial graph, and use this to answer Question 1. For Question 2, we give a hierarchy of g
12#
發(fā)表于 2025-3-23 15:12:34 | 只看該作者
Interactions with Graph Polynomials,n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
13#
發(fā)表于 2025-3-23 21:25:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:30:48 | 只看該作者
https://doi.org/10.1007/978-3-658-07627-6ving that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisation
16#
發(fā)表于 2025-3-24 08:55:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:29 | 只看該作者
https://doi.org/10.1007/978-3-658-09911-4n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
18#
發(fā)表于 2025-3-24 16:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:42 | 只看該作者
https://doi.org/10.1007/978-3-642-34775-7ned rotation systems. It covers Petrie duals, geometric duals, medial graphs and Tait graphs; and the relations among them. These definitions and relations motivate much of the work presented later in the monograph.
20#
發(fā)表于 2025-3-25 02:13:54 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 10:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黔西县| 嫩江县| 龙泉市| 封丘县| 白沙| 吴川市| 泾川县| 元氏县| 汨罗市| 什邡市| 桐梓县| 唐山市| 哈密市| 铜川市| 湟中县| 蕉岭县| 大英县| 鹤峰县| 陵川县| 班戈县| 仁化县| 潍坊市| 门头沟区| 澄城县| 博爱县| 长治县| 通州区| 长垣县| 南平市| 宽城| 偏关县| 宜州市| 即墨市| 江阴市| 加查县| 嘉善县| 保靖县| 泸州市| 紫金县| 阳朔县| 永安市|