找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: ossicles
11#
發(fā)表于 2025-3-23 11:18:04 | 只看該作者
Graphs in Perturbation Theory978-3-030-03541-9Series ISSN 2190-5053 Series E-ISSN 2190-5061
12#
發(fā)表于 2025-3-23 16:46:24 | 只看該作者
13#
發(fā)表于 2025-3-23 21:04:21 | 只看該作者
The Ring of Factorially Divergent Power Series, is solely concerned with sequences ., which admit an asymptotic expansion for large . of the form, .for some ., . and . as they appeared in the statement of Theorem?.. The theory of these sequences is independent of the theory of zero-dimensional QFT and graphical enumeration, but necessary to analyze the asymptotics for these problems.
14#
發(fā)表于 2025-3-23 23:33:03 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:36 | 只看該作者
https://doi.org/10.1007/978-94-010-1357-4Having discussed the algebraic structure of formal power series, we will now return to graphs and introduce a more advanced algebraic structure on them.
16#
發(fā)表于 2025-3-24 07:19:37 | 只看該作者
Myth and Narrative in International PoliticsThe content of this chapter is partially based on the author’s article (Borinsky, Lett Math Phys 106(7):879–911, 2016) [.].
17#
發(fā)表于 2025-3-24 12:40:49 | 只看該作者
https://doi.org/10.1057/978-1-137-58044-3The content of this chapter is partially based on the author’s article (Borinsky, Ann Phys 385:95–135, 2017) [.].
18#
發(fā)表于 2025-3-24 16:06:27 | 只看該作者
Graphical Enumeration,In this chapter, we will motivate our analysis of graph generating functions in detail using zero-dimensional quantum field theory. The content of this chapter is partially based on the author’s article (Borinsky, Ann Phys 385:95–135 (2017) [.]).
19#
發(fā)表于 2025-3-24 20:27:54 | 只看該作者
Coalgebraic Graph Structures,Having discussed the algebraic structure of formal power series, we will now return to graphs and introduce a more advanced algebraic structure on them.
20#
發(fā)表于 2025-3-25 01:20:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
岑溪市| 临夏市| 南宁市| 新营市| 合水县| 兴海县| 嘉义市| 郧西县| 四子王旗| 红安县| 漠河县| 当阳市| 岳普湖县| 平顶山市| 台湾省| 汶川县| 定远县| 武山县| 正阳县| 旺苍县| 红河县| 夏津县| 麟游县| 滁州市| 保定市| 修文县| 伊吾县| 荆州市| 竹溪县| 宁明县| 岫岩| 右玉县| 湘阴县| 崇州市| 丘北县| 体育| 玉山县| 平阴县| 民丰县| 利津县| 松溪县|