找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: patch-test
41#
發(fā)表于 2025-3-28 16:35:03 | 只看該作者
https://doi.org/10.1057/9780230374133lassification methods often involve dividing digitised whole slide images into patches, which leads to the loss of important contextual diagnostic information. Here, we propose using graph attention neural networks, which utilise graph representations of whole slide images, to introduce context to c
42#
發(fā)表于 2025-3-28 21:53:32 | 只看該作者
43#
發(fā)表于 2025-3-29 02:23:28 | 只看該作者
https://doi.org/10.1007/978-0-387-76566-2nsight into the tumor microenvironment. In this work we investigate the impact of ground truth formats on the models performance. Additionally, cell-tissue interactions are considered by providing tissue segmentation predictions as input to the cell detection model. We find that a “soft”, probabilit
44#
發(fā)表于 2025-3-29 04:42:38 | 只看該作者
https://doi.org/10.1007/978-3-319-74784-2ained fully convolutional ResNet-50 models that were developed using only the small field-of-view (FoV) images with cell-level annotations of the challenge dataset (the large FoV images with tissue-level annotations were not used). The submitted model achieved a F.-score of 0.673 on the evaluation s
45#
發(fā)表于 2025-3-29 08:18:05 | 只看該作者
https://doi.org/10.1007/1-56898-659-9 cellular mechanisms. It involves identifying and locating cells within images acquired from various microscopy techniques. In order to understand cell behavior and tissue structure, using computer-aided system is a efficient and promising way. In this paper, we present our approach for the OCELOT 2
46#
發(fā)表于 2025-3-29 14:30:41 | 只看該作者
https://doi.org/10.1007/978-3-030-15632-9esponse. The Overlapped Cell on Tissue Dataset for Histopathology (OCELOT) challenge aimed to explore ways to improve automated cell detection algorithms by leveraging surrounding tissue information. We developed two cell detection algorithms for this challenge that both leverage surrounding tissue
47#
發(fā)表于 2025-3-29 16:21:42 | 只看該作者
Nam Sung-wook,Chae Su-lan,Lee Ga-youngintroduction of the OCELOT dataset, which offers annotated images featuring overlapping cell and tissue structures derived from diverse organs. The significance of OCELOT dataset lies in its provision of valuable insights into the intricate relationship between the surrounding tissue structures and
48#
發(fā)表于 2025-3-29 21:16:23 | 只看該作者
https://doi.org/10.1007/978-3-658-29752-7abeling is time-consuming. Many experiments speed up the generation of cell data by annotating central cell points and classes, generating cell segmentation labels with a fixed radius. However, the accuracy of this method depends on the specified given radius, which is problematic due to the variety
49#
發(fā)表于 2025-3-30 02:19:59 | 只看該作者
50#
發(fā)表于 2025-3-30 08:03:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 温泉县| 南江县| 嵊泗县| 博兴县| 赤峰市| 息烽县| 龙游县| 修文县| 泸水县| 沽源县| 嘉善县| 开封县| 云浮市| 玉溪市| 罗甸县| 沐川县| 霍邱县| 长丰县| 高平市| 龙海市| 祥云县| 镇坪县| 鲁甸县| 武冈市| 泗洪县| 敖汉旗| 松潘县| 阳东县| 黄骅市| 水城县| 珲春市| 通州区| 静海县| 黄石市| 新宾| 平潭县| 峨眉山市| 阿巴嘎旗| 水城县| 屏东市|