找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 21:19:58 | 只看該作者
Multi-modal Brain Connectivity Study Using Deep Collaborative Learningning correlation analysis and label information using deep networks, which may lead to better performance both for classification/prediction and for correlation detection. Results demonstrated the out-performance of DCL over other conventional models in terms of classification accuracy. Experiments
32#
發(fā)表于 2025-3-27 04:06:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
Cross-diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmodict dimensional phenotypes of insight and obsession/compulsions across a sample of unmedicated adults with BDD (n?=?29) and weight-restored AN (n?=?24). The multivariate model that included fMRI and white matter connectivity data performed significantly better in predicting both insight and obsessi
34#
發(fā)表于 2025-3-27 09:58:56 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:30 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:03 | 只看該作者
https://doi.org/10.1007/978-1-4757-9450-2eatures compared to the undirected ones for recognizing the cognitive processes. The representation power of the suggested brain networks are tested in a task-fMRI dataset of Human Connectome Project and a Complex Problem Solving dataset.
38#
發(fā)表于 2025-3-28 05:21:42 | 只看該作者
https://doi.org/10.1007/978-1-4615-7514-6cores at future time-points. We use a sigmoidal function to model latent disease progression, which gives rise to clinical observations in our generative model. We implemented an approximate Bayesian inference strategy on the proposed model to estimate the parameters on data from a large population
39#
發(fā)表于 2025-3-28 06:26:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 会泽县| 龙川县| 涞水县| 玛沁县| 舟曲县| 雷波县| 连山| 札达县| 西宁市| 铁岭县| 红安县| 赤城县| 青河县| 辽源市| 五指山市| 桂阳县| 常州市| 湘潭市| 儋州市| 宜阳县| 新河县| 姚安县| 山东| 德江县| 五大连池市| 望谟县| 堆龙德庆县| 广西| 巫溪县| 太康县| 陆河县| 奇台县| 鸡东县| 保靖县| 聂荣县| 阳信县| 东莞市| 罗田县| 大足县| 务川|