找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 21:19:58 | 只看該作者
Multi-modal Brain Connectivity Study Using Deep Collaborative Learningning correlation analysis and label information using deep networks, which may lead to better performance both for classification/prediction and for correlation detection. Results demonstrated the out-performance of DCL over other conventional models in terms of classification accuracy. Experiments
32#
發(fā)表于 2025-3-27 04:06:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
Cross-diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmodict dimensional phenotypes of insight and obsession/compulsions across a sample of unmedicated adults with BDD (n?=?29) and weight-restored AN (n?=?24). The multivariate model that included fMRI and white matter connectivity data performed significantly better in predicting both insight and obsessi
34#
發(fā)表于 2025-3-27 09:58:56 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:30 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:03 | 只看該作者
https://doi.org/10.1007/978-1-4757-9450-2eatures compared to the undirected ones for recognizing the cognitive processes. The representation power of the suggested brain networks are tested in a task-fMRI dataset of Human Connectome Project and a Complex Problem Solving dataset.
38#
發(fā)表于 2025-3-28 05:21:42 | 只看該作者
https://doi.org/10.1007/978-1-4615-7514-6cores at future time-points. We use a sigmoidal function to model latent disease progression, which gives rise to clinical observations in our generative model. We implemented an approximate Bayesian inference strategy on the proposed model to estimate the parameters on data from a large population
39#
發(fā)表于 2025-3-28 06:26:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
普宁市| 东乡| 依安县| 泽普县| 项城市| 哈巴河县| 延长县| 于田县| 江西省| 赤水市| 福州市| 开封县| 宜昌市| 涡阳县| 鄱阳县| 灌阳县| 蒙阴县| 蓝山县| 来宾市| 诏安县| 龙岩市| 漾濞| 和田市| 丹江口市| 宜宾市| 南昌县| 泽州县| 丽江市| 克东县| 佛山市| 海城市| 汶川县| 高邮市| 甘肃省| 霍山县| 衡南县| 万源市| 合肥市| 醴陵市| 三门峡市| 平定县|