找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:31:04 | 只看該作者
42#
發(fā)表于 2025-3-28 19:55:34 | 只看該作者
A Graph-Theoretic Approach to the Jump-Number Problemc representation. Then, we strengthen the greedy algorithm and exhibit a class of posets for which it generates optimal linear extensions. Finally, we give a short informal survey of construction methods for arc representations of posets and a list of the most important contributions to the jump num
43#
發(fā)表于 2025-3-29 01:46:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:15:45 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:09 | 只看該作者
46#
發(fā)表于 2025-3-29 13:12:49 | 只看該作者
https://doi.org/10.1007/978-3-658-30932-9this theme is attracting more attention. Besides the challenge of the unsolved one reason for the vitality of the diagram theme lies in its potential for highlighting graphical configurations of use both in combinatorial and structural problems.
47#
發(fā)表于 2025-3-29 17:49:53 | 只看該作者
https://doi.org/10.1007/978-3-322-94137-4ose problems where this argument is applicable, a natural question to ask is: “can this bound be achieved?” or “how close can we come to achieving the bound?” For the sorting problem above there are several well-known algorithms that essentially attain the ITB (see [Kn]), but of course this is not t
48#
發(fā)表于 2025-3-29 20:30:58 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:38 | 只看該作者
https://doi.org/10.1007/978-3-319-44377-5 apply. Other topics include duality questions for product orders or product graphs, and the study of element sets that meet all maximal chains in a poset or maximal cliques in a graph..Packing and covering focus on vertex subsets; “representation” expresses the entire relation as the union or inter
50#
發(fā)表于 2025-3-30 06:38:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武川县| 巴楚县| 扶风县| 高唐县| 九台市| 绥棱县| 自治县| 涿州市| 辽宁省| 黄山市| 罗甸县| 左权县| 白银市| 峨眉山市| 银川市| 余干县| 安庆市| 古田县| 武威市| 瑞丽市| 汉沽区| 措美县| 西安市| 深圳市| 伽师县| 云南省| 钟山县| 玉屏| 绥阳县| 金湖县| 环江| 尼玛县| 隆安县| 易门县| 永兴县| 镇宁| 清流县| 农安县| 旬邑县| 泉州市| 海晏县|