找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 遮陽傘
21#
發(fā)表于 2025-3-25 05:51:02 | 只看該作者
https://doi.org/10.1007/978-3-662-67273-0 well-known “scissors, paper and stone” game, is considered. We show that in a tournament game, both the players have a unique optimal strategy. We then consider incidence matrix games, where the payoff matrix is the incidence matrix of a directed graph. A graph-theoretic description of the value and the optimal strategies is provided.
22#
發(fā)表于 2025-3-25 09:05:15 | 只看該作者
23#
發(fā)表于 2025-3-25 12:49:54 | 只看該作者
Cycles and Cuts,djacency matrix of a regular graph and that of its complement and line graph. Several results in this direction are proved in the next section. In the final section we derive spectral properties of strongly regular graph and apply them to derive the well-known Friendship Theorem.
24#
發(fā)表于 2025-3-25 16:59:23 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:31 | 只看該作者
26#
發(fā)表于 2025-3-26 02:28:27 | 只看該作者
https://doi.org/10.1007/978-1-4613-2643-4that bring out the connection between the distance matrix and the Laplacian of a tree. A formula for the inverse of the distance matrix, due to Graham and Lovaász, is proved. In the final section we prove some properties of the eigenvalues of the distance matrix of a tree.
27#
發(fā)表于 2025-3-26 04:18:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:58 | 只看該作者
29#
發(fā)表于 2025-3-26 13:08:36 | 只看該作者
30#
發(fā)表于 2025-3-26 18:23:30 | 只看該作者
Adjacency Matrix,ted. The Matrix-Tree Theorem and some related results are proved. Bounds for the Laplacian spectral radius are obtained. The edge-Laplacian is considered and a formula for the inverse of the edge-Laplacian of a tree is obtained. In the process we also obtain a formula for the Moore-Penrose inverse o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣武区| 岳阳县| 马尔康县| 米脂县| 新绛县| 蒙阴县| 杭锦后旗| 铜川市| 富蕴县| 麻栗坡县| 漳州市| 马边| 东乌珠穆沁旗| 道孚县| 迁安市| 和平区| 察雅县| 宜都市| 贵溪市| 铁岭县| 开江县| 黎川县| 武邑县| 会同县| 探索| 伊川县| 罗甸县| 木里| 宝坻区| 莱芜市| 马龙县| 广汉市| 财经| 宣化县| 南开区| 景泰县| 和硕县| 吉木萨尔县| 南漳县| 慈溪市| 鸡西市|