找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Callow
21#
發(fā)表于 2025-3-25 04:08:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:43:22 | 只看該作者
RecurrenceThe topic presented in this chapter is recurrence. This concept can be studied via probability, potential theory and operator theory and has interpretations in each context.
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:05 | 只看該作者
Uniformly Positive MeasureIn this chapter we look at consequences of lower bounds on the measure . for a graph . over a discrete measure space .. We formulate the lower bound assumptions in two ways.
26#
發(fā)表于 2025-3-26 02:07:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:48:56 | 只看該作者
Sparseness and Isoperimetric InequalitiesIn this chapter we investigate what it means for a graph to have relatively few edges. This leads to the notions of weakly sparse, approximately sparse and sparse graphs, as well as graphs which satisfy a strong isoperimetric inequality.
28#
發(fā)表于 2025-3-26 08:46:29 | 只看該作者
29#
發(fā)表于 2025-3-26 14:01:04 | 只看該作者
Harmonic Functions and Caccioppoli TheoryThe key tool for all of these results are variants of the Caccioppoli inequality which are established in Section 12.1. Roughly speaking, such inequalities allow us to estimate the energy of . times a cutoff function by . times the energy of the cutoff function.
30#
發(fā)表于 2025-3-26 19:17:20 | 只看該作者
Spectral BoundsIn this section we prove an analogue to Cheeger’s famous theorem on Riemannian manifolds. This result relates an isoperimetric constant, called the Cheeger constant, to the bottom of the spectrum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫金县| 攀枝花市| 张家界市| 屯留县| 五华县| 甘南县| 金溪县| 滕州市| 抚宁县| 潢川县| 胶南市| 祁门县| 峨眉山市| 丰台区| 鹿邑县| 佳木斯市| 高碑店市| 仁怀市| 德江县| 莱西市| 小金县| 时尚| 油尖旺区| 石河子市| 常德市| 宜阳县| 静宁县| 德令哈市| 滕州市| 萨迦县| 绩溪县| 涞水县| 星子县| 资兴市| 灵丘县| 井研县| 隆安县| 文登市| 攀枝花市| 万盛区| 洛浦县|