找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 明顯
41#
發(fā)表于 2025-3-28 16:26:24 | 只看該作者
42#
發(fā)表于 2025-3-28 21:25:03 | 只看該作者
https://doi.org/10.1007/978-3-663-10855-9crossing number are introduced and related to one another. We then deal with topological techniques in the theory of chromatic numbers, and state a very ambitious meta-conjecture which is quite useful in generating true theorems. In closing, we attempt to suggest appropriate directions for further r
43#
發(fā)表于 2025-3-29 00:04:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:47:00 | 只看該作者
https://doi.org/10.1007/978-3-322-87301-9s, (2) we can determine the first p moments by counting closed walks and then find the spectrum from the moments, or (3) we can use certain subgraphs to determine the coefficients of the characteristic polynomial and then find its roots..In practice, however, all of these approaches may prove to be
45#
發(fā)表于 2025-3-29 11:04:50 | 只看該作者
https://doi.org/10.1007/978-3-663-01491-1n independent set of vertices that contains at least 1/4 of the vertices of the graph. The purpose of this paper is to give an algorithm that produces an independent set in a planar graph that contains more than 2/9 of the vertices of the graph.
46#
發(fā)表于 2025-3-29 15:00:00 | 只看該作者
https://doi.org/10.1007/978-3-476-03772-5induce 1-factorizations of complete graphs. It is easy to show that these 1-factorizations possess enough symmetry to insure that if {F., F.} and {F., F.} are pairs of distinct 1-factors from such a 1-factorization, then the cycle structures of F. ∪ F. and F. ∪ F. are identical. The method is applie
47#
發(fā)表于 2025-3-29 15:53:40 | 只看該作者
https://doi.org/10.1007/978-3-663-02714-0er well-known graphical invariants is discussed, and ζ is evaluated for a variety of special classes of graphs. A simple algorithm is developed for determining ζ in the case of a tree, and it is shown that this tree algorithm can be generalized to yield ζ for any connected graph. Degree conditions a
48#
發(fā)表于 2025-3-29 22:57:32 | 只看該作者
49#
發(fā)表于 2025-3-30 01:24:30 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河源市| 周至县| 嵊泗县| 西贡区| 定安县| 银川市| 兰西县| 蒙城县| 安远县| 商都县| 淄博市| 旌德县| 芒康县| 阳谷县| 景谷| 肇庆市| 磐石市| 凉山| 社旗县| 凤阳县| 马龙县| 弥渡县| 旌德县| 商河县| 工布江达县| 昌邑市| 安塞县| 大城县| 大悟县| 柞水县| 曲周县| 绥芬河市| 太湖县| 吉林市| 汝城县| 陕西省| 淮南市| 胶南市| 来安县| 大名县| 疏附县|