找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 明顯
41#
發(fā)表于 2025-3-28 16:26:24 | 只看該作者
42#
發(fā)表于 2025-3-28 21:25:03 | 只看該作者
https://doi.org/10.1007/978-3-663-10855-9crossing number are introduced and related to one another. We then deal with topological techniques in the theory of chromatic numbers, and state a very ambitious meta-conjecture which is quite useful in generating true theorems. In closing, we attempt to suggest appropriate directions for further r
43#
發(fā)表于 2025-3-29 00:04:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:47:00 | 只看該作者
https://doi.org/10.1007/978-3-322-87301-9s, (2) we can determine the first p moments by counting closed walks and then find the spectrum from the moments, or (3) we can use certain subgraphs to determine the coefficients of the characteristic polynomial and then find its roots..In practice, however, all of these approaches may prove to be
45#
發(fā)表于 2025-3-29 11:04:50 | 只看該作者
https://doi.org/10.1007/978-3-663-01491-1n independent set of vertices that contains at least 1/4 of the vertices of the graph. The purpose of this paper is to give an algorithm that produces an independent set in a planar graph that contains more than 2/9 of the vertices of the graph.
46#
發(fā)表于 2025-3-29 15:00:00 | 只看該作者
https://doi.org/10.1007/978-3-476-03772-5induce 1-factorizations of complete graphs. It is easy to show that these 1-factorizations possess enough symmetry to insure that if {F., F.} and {F., F.} are pairs of distinct 1-factors from such a 1-factorization, then the cycle structures of F. ∪ F. and F. ∪ F. are identical. The method is applie
47#
發(fā)表于 2025-3-29 15:53:40 | 只看該作者
https://doi.org/10.1007/978-3-663-02714-0er well-known graphical invariants is discussed, and ζ is evaluated for a variety of special classes of graphs. A simple algorithm is developed for determining ζ in the case of a tree, and it is shown that this tree algorithm can be generalized to yield ζ for any connected graph. Degree conditions a
48#
發(fā)表于 2025-3-29 22:57:32 | 只看該作者
49#
發(fā)表于 2025-3-30 01:24:30 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘阴县| 威宁| 万安县| 乌鲁木齐县| 来安县| 布拖县| 东方市| 辽宁省| 大化| 理塘县| 吉木乃县| 灵石县| 安庆市| 招远市| 阿拉善左旗| 莲花县| 宁德市| 仪征市| 陆良县| 封开县| 嘉善县| 大同县| 英吉沙县| 贡觉县| 云安县| 伊川县| 冀州市| 宜宾市| 长兴县| 江门市| 阿拉善右旗| 扬州市| 贵定县| 河源市| 明光市| 玉山县| 南溪县| 华宁县| 潢川县| 尼玛县| 凉城县|