找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Exacting
11#
發(fā)表于 2025-3-23 11:48:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:22 | 只看該作者
Graphs and Combinatorial Optimization: from Theory to Applications
13#
發(fā)表于 2025-3-23 18:36:36 | 只看該作者
The Chromatic Polynomial of a Digraph,ber of such colorings with . colors can be done by counting so-called Neumann-Lara-coflows (NL-coflows), which build a polynomial in .. We will present a representation of this polynomial using totally cyclic subdigraphs, which form a graded poset .. Furthermore we will decompose our NL-coflow polyn
14#
發(fā)表于 2025-3-24 01:02:50 | 只看該作者
On List ,-Coloring Convex Bipartite Graphs,with colors in {1, 2, …, .}. The problem is known to be NP-hard even for .?=?3 within the class of 3-regular planar bipartite graphs and for .?=?4 within the class of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the complexity of . 3. in the class of chordal bipartite grap
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Total Chromatic Sum for Trees, provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
16#
發(fā)表于 2025-3-24 08:32:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:32:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 紫阳县| 类乌齐县| 胶州市| 北宁市| 甘肃省| 繁峙县| 承德县| 黄石市| 绥滨县| 乳源| 彝良县| 阳朔县| 赤壁市| 德惠市| 新绛县| 班玛县| 耒阳市| 金川县| 茌平县| 科技| 静宁县| 逊克县| 大兴区| 萍乡市| 景洪市| 偃师市| 介休市| 霍林郭勒市| 米林县| 七台河市| 紫金县| 紫阳县| 桦川县| 化州市| 宜良县| 正宁县| 虎林市| 丹阳市| 神农架林区| 沽源县|