找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Exacting
11#
發(fā)表于 2025-3-23 11:48:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:22 | 只看該作者
Graphs and Combinatorial Optimization: from Theory to Applications
13#
發(fā)表于 2025-3-23 18:36:36 | 只看該作者
The Chromatic Polynomial of a Digraph,ber of such colorings with . colors can be done by counting so-called Neumann-Lara-coflows (NL-coflows), which build a polynomial in .. We will present a representation of this polynomial using totally cyclic subdigraphs, which form a graded poset .. Furthermore we will decompose our NL-coflow polyn
14#
發(fā)表于 2025-3-24 01:02:50 | 只看該作者
On List ,-Coloring Convex Bipartite Graphs,with colors in {1, 2, …, .}. The problem is known to be NP-hard even for .?=?3 within the class of 3-regular planar bipartite graphs and for .?=?4 within the class of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the complexity of . 3. in the class of chordal bipartite grap
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Total Chromatic Sum for Trees, provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
16#
發(fā)表于 2025-3-24 08:32:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:32:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀仁县| 赤壁市| 海阳市| 石首市| 石河子市| 拉孜县| 边坝县| 福清市| 勐海县| 即墨市| 建宁县| 崇义县| 泰和县| 龙游县| 靖边县| 萍乡市| 灵山县| 许昌市| 永登县| 通州市| 榕江县| 新闻| 昌邑市| 玉林市| 乐都县| 溧水县| 吉水县| 岳池县| 班玛县| 股票| 广西| 云林县| 新乐市| 吉林省| 普格县| 陆河县| 潢川县| 玉林市| 陕西省| 罗甸县| 茌平县|