找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: ACORN
21#
發(fā)表于 2025-3-25 05:44:02 | 只看該作者
22#
發(fā)表于 2025-3-25 09:31:16 | 只看該作者
https://doi.org/10.1007/978-1-349-09399-1As in the previous chapter this chapter mainly deals with multivariate data. A multivariate data set can conveniently be expressed in the form of a matrix as follows: .The rows of X therefore, represent the . different cases while the columns represent the . variables.
23#
發(fā)表于 2025-3-25 14:03:39 | 只看該作者
https://doi.org/10.1007/978-94-009-5943-9In a regression analysis the following graphical techniques are particularly important:
24#
發(fā)表于 2025-3-25 19:44:53 | 只看該作者
Carsten Schultz,Katharina H?lzleTime series data are usually collected on a monthly, quarterly or annual basis. Such time series provide important economic and demographic information and are published by various institutions on a regular basis.
25#
發(fā)表于 2025-3-25 23:54:16 | 只看該作者
The Role of Graphics in Data Exploration,One of the most difficult tasks of a researcher is to convey findings based on statistical analyses to interested persons. Failure to communicate these findings successfully puts paid to all his data-analytical work, irrespective of its quality.
26#
發(fā)表于 2025-3-26 03:37:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:31:11 | 只看該作者
Cluster Analysis,As in the previous chapter this chapter mainly deals with multivariate data. A multivariate data set can conveniently be expressed in the form of a matrix as follows: .The rows of X therefore, represent the . different cases while the columns represent the . variables.
28#
發(fā)表于 2025-3-26 09:05:31 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:08:04 | 只看該作者
https://doi.org/10.1007/978-3-662-53229-4ta in two dimensions. Some of these techniques, such as Andrews’ curves and Chernoff faces, have captured the imagination of the research community (particularly the non-statisticians) and are currently enjoying widespread interest. Some ten representations will be discussed in this chapter and illustrated on the basis of simple examples.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 胶南市| 清徐县| 营口市| 凌云县| 枞阳县| 仁怀市| 绥滨县| 天等县| 新丰县| 伊春市| 礼泉县| 木兰县| 巴彦县| 开封市| 正蓝旗| 邯郸县| 南陵县| 叶城县| 连江县| 阜平县| 新化县| 依安县| 儋州市| 千阳县| 新昌县| 关岭| 大丰市| 双流县| 阿拉善盟| 怀柔区| 祁门县| 呼玛县| 尚义县| 哈尔滨市| 浑源县| 梧州市| 宁德市| 历史| 介休市| 澎湖县|