找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: CYNIC
41#
發(fā)表于 2025-3-28 17:44:48 | 只看該作者
https://doi.org/10.1007/978-1-4419-7130-2planar and regular. Moreover, we study the less known class of?.-Hamiltonian-ordered graphs, which are graphs that admit for any .-tuple of vertices a Hamiltonian cycle visiting them in the order given by the tuple. We prove that . remains .-hard in these restricted cases, even if a Hamiltonian cycl
42#
發(fā)表于 2025-3-28 18:51:06 | 只看該作者
Molecular Design of Tautomeric Compoundsrtices. Betweenness centrality is efficiently computable and it is a fundamental tool in network science. Continuing and extending previous work, we study the efficient computability of betweenness centrality in . graphs (graphs with fixed vertex set but time-varying arc sets). Unlike in the static
43#
發(fā)表于 2025-3-29 01:06:03 | 只看該作者
44#
發(fā)表于 2025-3-29 03:04:32 | 只看該作者
45#
發(fā)表于 2025-3-29 10:49:20 | 只看該作者
Graph-Theoretic Concepts in Computer Science978-3-030-86838-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
46#
發(fā)表于 2025-3-29 13:17:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:17:38 | 只看該作者
https://doi.org/10.1007/978-1-4419-7130-2planar and regular. Moreover, we study the less known class of?.-Hamiltonian-ordered graphs, which are graphs that admit for any .-tuple of vertices a Hamiltonian cycle visiting them in the order given by the tuple. We prove that . remains .-hard in these restricted cases, even if a Hamiltonian cycle is additionally given as part of the input.
48#
發(fā)表于 2025-3-29 23:44:27 | 只看該作者
49#
發(fā)表于 2025-3-30 02:13:37 | 只看該作者
50#
發(fā)表于 2025-3-30 04:42:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆城县| 临漳县| 河南省| 门源| 长葛市| 郴州市| 日喀则市| 秭归县| 诸暨市| 嘉善县| 花莲市| 宜章县| 布拖县| 陆丰市| 灵山县| 额尔古纳市| 天气| 巢湖市| 志丹县| 自治县| 贞丰县| 太仆寺旗| 昭苏县| 昌乐县| 庆城县| 台北市| 社旗县| 太白县| 北辰区| 商水县| 利川市| 荥经县| 西畴县| 察哈| 包头市| 武城县| 武穴市| 郑州市| 太和县| 理塘县| 来凤县|