找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 13:40:38 | 只看該作者
,On the Parameterized Complexity of the Connected Flow and Many Visits?TSP Problem,emand vertices . with demands ., and costs and capacities for each edge. The goal is to find a minimum cost flow that satisfies the demands, respects the capacities and induces a (strongly) connected subgraph. This generalizes previously studied problems like the ...We study the parameterized comple
12#
發(fā)表于 2025-3-23 17:16:00 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:54 | 只看該作者
Disjoint Stable Matchings in Linear Time,cal results: .Moreover, we also give an algorithm to enumerate all maximum-length chains of disjoint stable matchings in the lattice of stable matchings of a given instance. This algorithm takes time polynomial in the input size for enumerating each chain. We also derive the expected number of such
14#
發(fā)表于 2025-3-23 22:18:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:32:05 | 只看該作者
On Subgraph Complementation to ,-free Graphs,duced by . in . results in a graph in .. We investigate the complexity of the problem when . is .-free for . being a complete graph, a star, a path, or a cycle. We obtain the following results:.Further, we prove that these hard problems do not admit subexponential-time algorithms (algorithms running
16#
發(fā)表于 2025-3-24 08:19:33 | 只看該作者
17#
發(fā)表于 2025-3-24 14:46:02 | 只看該作者
Preventing Small ,-Cuts by Protecting Edges,of total cost at most?. such that?. has no?(.,?.)-edge cut of capacity at most?. that is disjoint from?.. We show that . (.,?.). is NP-hard even on subcubcic graphs when all edges have capacity and cost one and provide a comprehensive study of the parameterized complexity of the problem. We show, fo
18#
發(fā)表于 2025-3-24 16:22:55 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:11 | 只看該作者
The Perfect Matching Cut Problem Revisited,ching cut, and is known to be .-complete. We revisit the problem and show that . remains .-complete when restricted to bipartite graphs of maximum degree?3 and arbitrarily large girth. Complementing this hardness result, we give two graph classes in which . is polynomial time solvable. The first one
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 阳泉市| 宜阳县| 湾仔区| 峨眉山市| 阳城县| 油尖旺区| 安远县| 深圳市| 林周县| 安宁市| 元氏县| 镇坪县| 横山县| 手游| 大姚县| 琼海市| 正阳县| 广昌县| 卢湾区| 施甸县| 张家港市| 定兴县| 丹棱县| 河曲县| 阳西县| 卓资县| 勃利县| 纳雍县| 沈阳市| 东明县| 凤庆县| 河东区| 民丰县| 广平县| 怀来县| 昌吉市| 隆德县| 尼木县| 德庆县| 临高县|