找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Menthol
51#
發(fā)表于 2025-3-30 11:44:16 | 只看該作者
How to Sell a Graph: Guidelines for Graph Retailers,mially solvable, contrasting its APX-hardness for the case of unlimited availability of items. However, if the underlying graph is a grid, and edge multiplicities are one, we show that it is even NP-complete to approximate the maximum profit to within a factor . ..
52#
發(fā)表于 2025-3-30 15:59:54 | 只看該作者
53#
發(fā)表于 2025-3-30 20:08:10 | 只看該作者
54#
發(fā)表于 2025-3-30 23:49:37 | 只看該作者
https://doi.org/10.1007/978-4-431-68467-1We present a fixed-parameter algorithm which computes for a set . of . points in the plane in . time a minimum weight triangulation. The parameter . is the number of points in . that lie in the interior of the convex hull of . and ..
55#
發(fā)表于 2025-3-31 04:34:02 | 只看該作者
https://doi.org/10.1007/978-1-4020-8245-0In this paper, we study a new problem of finding a convex drawing of graphs with a . boundary. It is proved that every triconnected plane graph whose boundary is fixed with a star-shaped polygon admits a drawing in which every inner facial cycle is drawn as a convex polygon. Such a drawing, called an ., can be obtained in linear time.
56#
發(fā)表于 2025-3-31 08:28:26 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:04 | 只看該作者
58#
發(fā)表于 2025-3-31 14:32:21 | 只看該作者
Convex Drawings of Graphs with Non-convex Boundary,In this paper, we study a new problem of finding a convex drawing of graphs with a . boundary. It is proved that every triconnected plane graph whose boundary is fixed with a star-shaped polygon admits a drawing in which every inner facial cycle is drawn as a convex polygon. Such a drawing, called an ., can be obtained in linear time.
59#
發(fā)表于 2025-3-31 18:44:24 | 只看該作者
Graph-Theoretic Concepts in Computer Science978-3-540-48382-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
60#
發(fā)表于 2025-4-1 00:30:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐边县| 新源县| 屯昌县| 穆棱市| 资阳市| 科技| 银川市| 荣昌县| 高阳县| 辽中县| 宁海县| 界首市| 云阳县| 新田县| 苍溪县| 噶尔县| 仁寿县| 丁青县| 万源市| 名山县| 通许县| 防城港市| 萨迦县| 华容县| 凤城市| 东乌| 镇平县| 龙南县| 桓仁| 沾益县| 乳山市| 漯河市| 文水县| 尚志市| 文化| 高陵县| 虎林市| 兴义市| 资溪县| 张家界市| 体育|