找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Menthol
51#
發(fā)表于 2025-3-30 11:44:16 | 只看該作者
How to Sell a Graph: Guidelines for Graph Retailers,mially solvable, contrasting its APX-hardness for the case of unlimited availability of items. However, if the underlying graph is a grid, and edge multiplicities are one, we show that it is even NP-complete to approximate the maximum profit to within a factor . ..
52#
發(fā)表于 2025-3-30 15:59:54 | 只看該作者
53#
發(fā)表于 2025-3-30 20:08:10 | 只看該作者
54#
發(fā)表于 2025-3-30 23:49:37 | 只看該作者
https://doi.org/10.1007/978-4-431-68467-1We present a fixed-parameter algorithm which computes for a set . of . points in the plane in . time a minimum weight triangulation. The parameter . is the number of points in . that lie in the interior of the convex hull of . and ..
55#
發(fā)表于 2025-3-31 04:34:02 | 只看該作者
https://doi.org/10.1007/978-1-4020-8245-0In this paper, we study a new problem of finding a convex drawing of graphs with a . boundary. It is proved that every triconnected plane graph whose boundary is fixed with a star-shaped polygon admits a drawing in which every inner facial cycle is drawn as a convex polygon. Such a drawing, called an ., can be obtained in linear time.
56#
發(fā)表于 2025-3-31 08:28:26 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:04 | 只看該作者
58#
發(fā)表于 2025-3-31 14:32:21 | 只看該作者
Convex Drawings of Graphs with Non-convex Boundary,In this paper, we study a new problem of finding a convex drawing of graphs with a . boundary. It is proved that every triconnected plane graph whose boundary is fixed with a star-shaped polygon admits a drawing in which every inner facial cycle is drawn as a convex polygon. Such a drawing, called an ., can be obtained in linear time.
59#
發(fā)表于 2025-3-31 18:44:24 | 只看該作者
Graph-Theoretic Concepts in Computer Science978-3-540-48382-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
60#
發(fā)表于 2025-4-1 00:30:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英山县| 南京市| 大名县| 枝江市| 乃东县| 和静县| 寿宁县| 清新县| 车致| 利辛县| 平凉市| 武安市| 台南市| 舟曲县| 措勤县| 隆林| 大英县| 江华| 和田县| 噶尔县| 新田县| 綦江县| 龙州县| 亳州市| 民乐县| 虞城县| 留坝县| 武宣县| 清河县| 类乌齐县| 磴口县| 任丘市| 碌曲县| 兴隆县| 大连市| 青川县| 曲水县| 林口县| 六安市| 高青县| 保靖县|