找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: ergonomics
41#
發(fā)表于 2025-3-28 16:13:54 | 只看該作者
42#
發(fā)表于 2025-3-28 22:38:53 | 只看該作者
43#
發(fā)表于 2025-3-29 00:14:47 | 只看該作者
Molecular Aspects of Membrane Phenomena Hadwiger number of a graph is .-hard on co-bipartite graphs, but can be solved in polynomial time on cographs and on bipartite permutation graphs. We also consider a natural generalization of this problem that asks for the largest integer?. such that?. has a minor with?. vertices and diameter at mo
44#
發(fā)表于 2025-3-29 04:51:53 | 只看該作者
45#
發(fā)表于 2025-3-29 11:08:58 | 只看該作者
Molecular Aspects of Papovaviruseseither common vertices nor adjacent vertices (except perhaps their ends) for .. We present a linear-time algorithm that solves . and finds the corresponding paths (if they exist) on circular-arc graphs. For interval graphs, we exhibit a linear-time algorithm for the generalization of . where the pai
46#
發(fā)表于 2025-3-29 14:46:30 | 只看該作者
47#
發(fā)表于 2025-3-29 18:38:23 | 只看該作者
Molecular Aspects of Cancer and its Therapy constant ratio approximation algorithm for this problem can be converted into a PTAS. This last result, combined with the .-hardness of the problem, shows that the problem cannot be approximated within a constant ratio unless ..
48#
發(fā)表于 2025-3-29 20:56:09 | 只看該作者
Molecular Aspects of Membrane Phenomena also consider a natural generalization of this problem that asks for the largest integer?. such that?. has a minor with?. vertices and diameter at most .. We show that this problem can be solved in polynomial time on AT-free graphs when ., but is .-hard on chordal graphs for every fixed ..
49#
發(fā)表于 2025-3-30 00:31:10 | 只看該作者
50#
發(fā)表于 2025-3-30 06:10:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东山县| 宝鸡市| 江源县| 乃东县| 五华县| 神农架林区| 微山县| 龙里县| 济阳县| 英超| 麟游县| 芦溪县| 昌江| 澄迈县| 德钦县| 镇巴县| 灵璧县| 特克斯县| 平顶山市| 黔西县| 英山县| 呼玛县| 昭觉县| 肇东市| 吕梁市| 十堰市| 赤壁市| 英德市| 盱眙县| 龙岩市| 永吉县| 若羌县| 马关县| 漳浦县| 尼木县| 开原市| 台安县| 吉首市| 浦东新区| 香港 | 剑河县|