找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: arouse
11#
發(fā)表于 2025-3-23 12:18:59 | 只看該作者
Embeddings of treelike graphs into 2-dimensional meshes,In the following we present embeddings of complete binary trees, pyramids and X-trees into 2-dimensional meshes. The presented embeddings achieve . expansion with congestion 2 for trees and congestion 6 for X-trees, and constant expansion ≤3 with congestion 3 for pyramids. The dilations are shown to be near optimal.
12#
發(fā)表于 2025-3-23 16:35:51 | 只看該作者
13#
發(fā)表于 2025-3-23 21:34:11 | 只看該作者
Finding minimally weighted subgraphs,ubgraph in an edge-weighted graph . on . nodes. We present an .(..)-algorithm for the weak subgraph problem. If the maximal degree of . is bounded, the algorithm above can be modified to an .(..)-algorithm for the induced subgraph problem.
14#
發(fā)表于 2025-3-24 01:59:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:54:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:24:59 | 只看該作者
Vertex-disjoint trees and boundary single-layer routing, consists of a set of . interconnecting the terminals belonging to the same (multi-terminal) net. An algorithm, unifying and generalizing previous BSLR algorithms, to solve an arbitrary instance of BSLR, is presented. Problems involving slidable terminals (i.e., when terminals can slide within a cer
20#
發(fā)表于 2025-3-25 01:14:14 | 只看該作者
Bounds on the quality of approximate solutions to the group Steiner problem, required vertices and Steiner vertices, GSP asks for a shortest connected subgraph, containing at least one vertex of each group. As the Steiner Problem is NP-hard, GSP is too, and we are interested in approximation algorithms. Efficient approximation algorithms have already been proposed, but noth
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙游县| 苍南县| 社会| 临武县| 乌兰县| 左权县| 银川市| 新宁县| 林州市| 靖州| 泌阳县| 永年县| 阿瓦提县| 会理县| 乌鲁木齐市| 新巴尔虎右旗| 民丰县| 新宁县| 拉孜县| 涟源市| 芜湖县| 象州县| 滨海县| 冷水江市| 杨浦区| 易门县| 专栏| 赤峰市| 卢氏县| 东光县| 襄樊市| 宿迁市| 河曲县| 万盛区| 社会| 东丽区| 绍兴市| 措美县| 广昌县| 澄迈县| 武鸣县|