找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: ARSON
31#
發(fā)表于 2025-3-27 00:16:43 | 只看該作者
32#
發(fā)表于 2025-3-27 05:05:57 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:06 | 只看該作者
34#
發(fā)表于 2025-3-27 10:25:54 | 只看該作者
Modernes Sourcing in der Automobilindustriery graphs: the leaves of this tree are the p-connected components along with weak vertices, that is, vertices of the graph that belong to no p-connected component. By refining this first result, we obtain a new decomposition for arbitrary graphs that generalizes the well-known modular decomposition.
35#
發(fā)表于 2025-3-27 14:08:59 | 只看該作者
https://doi.org/10.1007/978-3-322-84124-7m combinatorial principles, we have recently designed a new family of labeled networks, called . (RCN‘s). These bipartite networks are recursive in nature with incrementability of one and succinctly representable. They have low diameter (equal to three), good fault-tolerance, and high degree of symm
36#
發(fā)表于 2025-3-27 19:59:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:47:01 | 只看該作者
38#
發(fā)表于 2025-3-28 02:30:01 | 只看該作者
39#
發(fā)表于 2025-3-28 06:28:04 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:12 | 只看該作者
Scheduling with incompatible jobs,consider the problem to minimize the maximum job completion time, the makespan. This problem is NP-complete..We present a number of polynomial time approximation algorithms for this problem where the job incompatibilities possess a special structure. As the incompatibilities form a graph on the set
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沧州市| 浦北县| 米林县| 清新县| 文安县| 玉溪市| 岑溪市| 武清区| 治多县| 湄潭县| 襄汾县| 新化县| 黔西| 海门市| 兴隆县| 红安县| 仁布县| 朔州市| 虞城县| 观塘区| 汾阳市| 昌江| 兰西县| 义马市| 霍山县| 当阳市| 甘孜县| 忻州市| 扎鲁特旗| 当涂县| 新蔡县| 秭归县| 枣阳市| 多伦县| 崇文区| 嘉义县| 台湾省| 景东| 栾川县| 山西省| 垫江县|