找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
51#
發(fā)表于 2025-3-30 11:17:39 | 只看該作者
On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Grants of planar upward drawings of several families of directed trees, we show how the results obtained for trees can be exploited to determine asymptotic optimal values for the area occupation of planar upward drawings of . and ..
52#
發(fā)表于 2025-3-30 12:50:53 | 只看該作者
53#
發(fā)表于 2025-3-30 19:13:56 | 只看該作者
54#
發(fā)表于 2025-3-30 23:25:13 | 只看該作者
55#
發(fā)表于 2025-3-31 01:00:43 | 只看該作者
https://doi.org/10.1007/978-3-662-65584-9?. is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.
56#
發(fā)表于 2025-3-31 05:58:40 | 只看該作者
Tree-Width and Optimization in Bounded Degree Graphs,ph problems – dominating set, independent dominating set and induced matching – and obtain several results toward revealing the equivalency between boundedness of the tree-width and polynomial-time solvability of these problems in bounded degree graphs.
57#
發(fā)表于 2025-3-31 11:06:47 | 只看該作者
58#
發(fā)表于 2025-3-31 15:44:26 | 只看該作者
On Finding Graph Clusterings with Maximum Modularity,hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.
59#
發(fā)表于 2025-3-31 20:55:37 | 只看該作者
Mixing 3-Colourings in Bipartite Graphs,?. is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.
60#
發(fā)表于 2025-4-1 01:17:51 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中牟县| 汽车| 光山县| 罗山县| 景德镇市| 基隆市| 娄底市| 洛阳市| 余姚市| 铁力市| 同德县| 马关县| 仁化县| 江西省| 霍州市| 永川市| 乌兰察布市| 革吉县| 襄汾县| 洮南市| 竹溪县| 墨玉县| 马龙县| 定州市| 公安县| 玛曲县| 随州市| 永胜县| 肥乡县| 营山县| 青神县| 平顶山市| 青铜峡市| 安吉县| 永顺县| 和平县| 武隆县| 措勤县| 桃园县| 南川市| 湖口县|