找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
31#
發(fā)表于 2025-3-26 21:24:18 | 只看該作者
32#
發(fā)表于 2025-3-27 01:58:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:10 | 只看該作者
34#
發(fā)表于 2025-3-27 09:25:55 | 只看該作者
https://doi.org/10.1007/978-3-476-04307-8hs over .(2). We propose here algebraic operations on graphs that characterize rank-width. For algorithmic purposes, it is important to represent graphs by balanced terms. We give a unique theorem that generalizes several “balancing theorems” for tree-width and clique-width. New results are obtained
35#
發(fā)表于 2025-3-27 14:03:14 | 只看該作者
https://doi.org/10.1007/978-3-658-40933-3(1.) the .-power graph of a tree has NLC-width at most .?+?2 and clique-width at most ., (2.) the .-leaf-power graph of a tree has NLC-width at most . and clique-width at most ., and (3.) the .-power graph of a graph of tree-width . has NLC-width at most (.?+?1).??1 and clique-width at most 2·(.?+?1
36#
發(fā)表于 2025-3-27 21:35:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:45:51 | 只看該作者
Markus Mangiapane,Roman P. Büchler., graphs that are both comparability and cocomparability graphs, it is known that minimal triangulations are interval graphs. We (negatively) answer the question whether every interval graph is a minimal triangulation of a permutation graph. We give a non-trivial characterisation of the class of in
38#
發(fā)表于 2025-3-28 03:24:24 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:00 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:43 | 只看該作者
https://doi.org/10.1007/978-3-662-08810-4planar drawings of planar graphs can be realized in .(..) area [9]. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (.), is a bipartite graph (.), or is an outerplanar graph (.). Concerning ., we show that optimal .(. log.) area
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 宁明县| 临海市| 潼关县| 宽甸| 和政县| 瓮安县| 丹凤县| 亳州市| 桃江县| 灵石县| 合川市| 游戏| 沾化县| 赤水市| 墨竹工卡县| 怀远县| 天等县| 湘潭市| 肥城市| 木兰县| 当涂县| 安新县| 长海县| 哈巴河县| 封丘县| 双牌县| 绥棱县| 嘉荫县| 张掖市| 德庆县| 灌南县| 西昌市| 宜都市| 慈溪市| 来凤县| 忻州市| 滨州市| 定安县| 玉龙| 兴山县|