找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
31#
發(fā)表于 2025-3-26 21:24:18 | 只看該作者
32#
發(fā)表于 2025-3-27 01:58:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:10 | 只看該作者
34#
發(fā)表于 2025-3-27 09:25:55 | 只看該作者
https://doi.org/10.1007/978-3-476-04307-8hs over .(2). We propose here algebraic operations on graphs that characterize rank-width. For algorithmic purposes, it is important to represent graphs by balanced terms. We give a unique theorem that generalizes several “balancing theorems” for tree-width and clique-width. New results are obtained
35#
發(fā)表于 2025-3-27 14:03:14 | 只看該作者
https://doi.org/10.1007/978-3-658-40933-3(1.) the .-power graph of a tree has NLC-width at most .?+?2 and clique-width at most ., (2.) the .-leaf-power graph of a tree has NLC-width at most . and clique-width at most ., and (3.) the .-power graph of a graph of tree-width . has NLC-width at most (.?+?1).??1 and clique-width at most 2·(.?+?1
36#
發(fā)表于 2025-3-27 21:35:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:45:51 | 只看該作者
Markus Mangiapane,Roman P. Büchler., graphs that are both comparability and cocomparability graphs, it is known that minimal triangulations are interval graphs. We (negatively) answer the question whether every interval graph is a minimal triangulation of a permutation graph. We give a non-trivial characterisation of the class of in
38#
發(fā)表于 2025-3-28 03:24:24 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:00 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:43 | 只看該作者
https://doi.org/10.1007/978-3-662-08810-4planar drawings of planar graphs can be realized in .(..) area [9]. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (.), is a bipartite graph (.), or is an outerplanar graph (.). Concerning ., we show that optimal .(. log.) area
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 兰考县| 乌兰浩特市| 克拉玛依市| 潜山县| 家居| 托克逊县| 四平市| 大化| 渝中区| 六盘水市| 元氏县| 泸定县| 涿州市| 靖安县| 珠海市| 罗山县| 宜君县| 德令哈市| 阿城市| 堆龙德庆县| 富平县| 嘉善县| 台北县| 石棉县| 西乌| 云南省| 福鼎市| 嘉荫县| 车险| 建水县| 县级市| 洪江市| 屏东市| 礼泉县| 贵溪市| 凤凰县| 青岛市| 澜沧| 泾阳县| 温泉县|