找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 戰(zhàn)神
31#
發(fā)表于 2025-3-27 00:42:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:36:14 | 只看該作者
Moderner Bankvertrieb im Dienst des Kundenvectors of the cliques of .. Introduced in [Aggregation of inequalities in integer programming. Chvátal and Hammer, Annals of Discrete Mathematics, 1977], the . of a graph ., denoted by ., is the minimum number of threshold graphs whose intersection yields .. Given a graph . on . vertices, in line w
33#
發(fā)表于 2025-3-27 05:52:55 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:25 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:39:39 | 只看該作者
37#
發(fā)表于 2025-3-27 22:57:58 | 只看該作者
,Twin-Width and?Transductions of?Proper ,-Mixed-Thin Graphs,kes classes of efficiently bounded twin-width attractive from the algorithmic point of view. In particular, such classes (of small twin-width) include proper interval graphs, and (as digraphs) posets of width?.. Inspired by an existing generalization of interval graphs into so-called .-thin graphs,
38#
發(fā)表于 2025-3-28 05:31:18 | 只看該作者
,Token Sliding on?Graphs of?Girth Five,dependent sets such that for all . the set . is an independent set of size?., ., . and .. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms . into . where
39#
發(fā)表于 2025-3-28 09:18:34 | 只看該作者
,Recognition of?Linear and?Star Variants of?Leaf Powers is in?P, graph is a leaf power if it is a .-leaf power for some .. Over 20 years ago, Nishimura et al. [J. Algorithms, 2002] asked if recognition of leaf powers was in P. Recently, Lafond [SODA 2022] showed an XP algorithm when parameterized by ., while leaving the main question open. In this paper, we expl
40#
發(fā)表于 2025-3-28 14:03:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 临沧市| 汶川县| 和平区| 东明县| 稷山县| 徐州市| 观塘区| 石嘴山市| 新田县| 大渡口区| 朝阳区| 靖边县| 肃南| 饶平县| 玉门市| 抚宁县| 娱乐| 西平县| 岢岚县| 许昌县| 阿坝县| 西藏| 永宁县| 凤山市| 疏勒县| 文登市| 广丰县| 侯马市| 梁山县| 龙游县| 巴东县| 化德县| 仙游县| 新竹市| 东港市| 定陶县| 彩票| 莒南县| 海阳市| 鄂托克前旗|