找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 掩飾
11#
發(fā)表于 2025-3-23 10:11:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:43 | 只看該作者
The Cinderella Game on Holes and Anti-holes,inderella can win the game..We determine the bucket numbers of all perfect graphs, and we also derive results on the bucket numbers of certain non-perfect graphs. In particular, we analyze the game on holes and (partially) on anti-holes for the cases where Cinderella sticks to a simple greedy strategy.
14#
發(fā)表于 2025-3-24 01:07:47 | 只看該作者
15#
發(fā)表于 2025-3-24 02:41:07 | 只看該作者
https://doi.org/10.1007/978-3-642-81506-5circular arc graphs, circular .-trapezoid graphs, convex graphs, Dilworth . graphs, .-polygon graphs and complements of .-degenerate graphs. Combined with results in [1,5], this implies that a large class of vertex subset and vertex partitioning problems can be solved in polynomial time on these graph classes.
16#
發(fā)表于 2025-3-24 10:08:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:37 | 只看該作者
Moderne Verfahren der Kryptographiewith no induced .. We also show that ... is fixed parameter tractable in .?+?. on graphs with no induced ..?+?.., and that .-. restricted to such graphs allows a polynomial kernel when parameterized by .. Finally, we show that ... is fixed parameter tractable in . for graphs with no induced ..?+?...
18#
發(fā)表于 2025-3-24 16:33:14 | 只看該作者
https://doi.org/10.1007/978-3-322-84306-7overy. In these inverse problems, the goal is to generate chemical compounds having desired structural properties, as there is a strong correlation between structural properties, such as the Wiener index, which is closely connected to the considered problem, and biological activity.
19#
發(fā)表于 2025-3-24 19:51:16 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖安县| 中阳县| 大悟县| 广东省| 聂拉木县| 平和县| 六盘水市| 黄大仙区| 犍为县| 剑川县| 西乡县| 辛集市| 望江县| 西平县| 谷城县| 台州市| 抚顺市| 兴城市| 延庆县| 和田县| 仁化县| 商都县| 台前县| 隆尧县| 平远县| 兰坪| 连州市| 西乡县| 新竹市| 峡江县| 宁强县| 玉屏| 丰城市| 泌阳县| 石屏县| 商洛市| 米易县| 于田县| 龙里县| 海阳市| 庆元县|