找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 櫥柜
51#
發(fā)表于 2025-3-30 10:59:08 | 只看該作者
52#
發(fā)表于 2025-3-30 14:44:58 | 只看該作者
https://doi.org/10.1007/978-3-322-90466-9at a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
53#
發(fā)表于 2025-3-30 20:28:03 | 只看該作者
Moderne Organisationstheorien 2 graph classes for all but finitely many cases, whenever neither of the forbidden graphs is a clique, a pan, or a complement of these graphs. Further reducing the remaining open cases we show that (with respect to graph isomorphism) forbidding a pan is equivalent to forbidding a clique of size three.
54#
發(fā)表于 2025-3-30 22:59:07 | 只看該作者
55#
發(fā)表于 2025-3-31 01:11:47 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:29 | 只看該作者
Constructing Resilient Structures in Graphs: Rigid vs. Competitive Fault-Tolerancet-tolerant, namely, reinforcing it so that following a failure event, its surviving part continues to satisfy the requirements. The talk will distinguish between two types of fault-tolerance, termed rigid and competitive fault tolerance, compare these two notions, and illustrate them on a number of examples.
57#
發(fā)表于 2025-3-31 11:44:40 | 只看該作者
Minimum Weighted Clique Cover on Strip-Composed Perfect Graphsat a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉氏县| 白水县| 板桥市| 吴堡县| 于田县| 交口县| 城固县| 永平县| 蕉岭县| 玉林市| 肥城市| 泰安市| 景宁| 清水县| 常德市| 合肥市| 闵行区| 泽库县| 鄂州市| 杭锦后旗| 搜索| 大足县| 武城县| 和平区| 威宁| 岐山县| 湘潭县| 北安市| 涟水县| 横山县| 都兰县| 镶黄旗| 南雄市| 焉耆| 册亨县| 晋州市| 信丰县| 竹溪县| 义马市| 益阳市| 雅安市|