找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: DEIFY
41#
發(fā)表于 2025-3-28 17:43:09 | 只看該作者
Moderne Geriatrie und Akutmedizin. such that . for each vertex ., where . denotes the number of edges of . incident to .. The general matching problem asks the existence of a .-matching in a given graph. A set .(.) is said to have a . . if there exists a number . such that . and .. Without any restrictions the general matching prob
42#
發(fā)表于 2025-3-28 20:14:49 | 只看該作者
43#
發(fā)表于 2025-3-29 01:14:34 | 只看該作者
Moderne Identit?t und Gesellschaftry by Thurston lead to effective versions of the Riemann Mapping Theorem and motivated Schramm’s Monster Packing Theorem. Monster Packing implies the existence of contact representations of planar triangulations where each vertex?. is represented by a homothetic copy of some smooth strictly-convex p
44#
發(fā)表于 2025-3-29 05:50:47 | 只看該作者
Helmut A. Stickl,Christian Kunzhe vertex set is fixed but the edges have (discrete) time labels. Since the corresponding . (.,?.). problem is .-hard, it is natural to investigate whether relevant special cases exist that are computationally tractable. To this end, we study restrictions of the underlying (static) graph—there we ob
45#
發(fā)表于 2025-3-29 07:31:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:48:24 | 只看該作者
47#
發(fā)表于 2025-3-29 15:38:05 | 只看該作者
Saving Probe Bits by Cube Domination, low-dimensional (grid) relaxations of the problem. The design of optimal schemes remains an open problem, however one has to notice that even usual domination in hypercubes is far from being completely understood.
48#
發(fā)表于 2025-3-29 21:32:23 | 只看該作者
49#
發(fā)表于 2025-3-30 02:59:58 | 只看該作者
Equiangular Polygon Contact Representations,linear equations whose variables correspond to lengths of boundary segments of the .-gons. If the system has a non-negative solution, this yields the intended contact representation. If the solution of the system contains negative variables, these can be used as sign-posts indicating how to change t
50#
發(fā)表于 2025-3-30 05:32:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海门市| 横峰县| 阿拉善右旗| 绥江县| 虎林市| 松江区| 屯门区| 宁河县| 三穗县| 东台市| 乌鲁木齐县| 德庆县| 阳新县| 象州县| 垫江县| 昔阳县| 高唐县| 石屏县| 靖西县| 绥德县| 朝阳区| 鹿邑县| 古丈县| 吉首市| 资兴市| 平顶山市| 红安县| 崇明县| 宝坻区| 巴楚县| 呼伦贝尔市| 博罗县| 南阳市| 将乐县| 资溪县| 松江区| 鄂温| 获嘉县| 清丰县| 云龙县| 宁都县|