找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 13:30:39 | 只看該作者
On Minimum Connecting Transition Sets in Graphs,cutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
12#
發(fā)表于 2025-3-23 14:26:44 | 只看該作者
Recognizing Hyperelliptic Graphs in Polynomial Time,aph algorithms and number theory. We consider so-called . (multigraphs of gonality 2) and provide a safe and complete set of reduction rules for such multigraphs, showing that we can recognize hyperelliptic graphs in time ., where . is the number of vertices and . the number of edges of the multigra
13#
發(fā)表于 2025-3-23 20:51:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:27:36 | 只看該作者
,Optimality Program in Segment and?String Graphs,is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in . by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which p
15#
發(fā)表于 2025-3-24 05:15:46 | 只看該作者
Anagram-Free Chromatic Number Is Not Pathwidth-Bounded,s note, we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free chromatic number. More specifically, we describe 2.-vertex planar graphs of pathwidth 3 with anagram-free chromatic number .. We also describe . vertex graphs with pathwidth . having anagram-free chromati
16#
發(fā)表于 2025-3-24 08:34:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:06:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:43:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封县| 大关县| 长宁县| 德江县| 永仁县| 肥西县| 上思县| 尉犁县| 肃北| 阜新| 嘉义县| 灵丘县| 涿鹿县| 钟山县| 罗江县| 三门峡市| 宁明县| 金乡县| 常德市| 建阳市| 渝中区| 永丰县| 新疆| 枞阳县| 出国| 黑河市| 潞西市| 抚远县| 曲阜市| 贵州省| 铜陵市| 治县。| 尉犁县| 广平县| 东莞市| 鸡泽县| 吐鲁番市| 百色市| 惠安县| 峨眉山市| 阿瓦提县|