找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Hypothesis
41#
發(fā)表于 2025-3-28 17:32:16 | 只看該作者
42#
發(fā)表于 2025-3-28 21:11:08 | 只看該作者
Exact and Parameterized Algorithms for ,, with respect to the number of vertices. We also show that its running time is 2.1364... when the goal is to find a spanning tree with at least . internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.
43#
發(fā)表于 2025-3-28 23:54:57 | 只看該作者
Parameterized Complexity of Generalized Domination Problems, of size . (and at most .) are W[1]-complete problems (when parameterized by .) for any pair of finite sets . and .. We further present results on dual parametrization by .???., and results on certain infinite sets (in particular for ., . being the sets of even and odd integers).
44#
發(fā)表于 2025-3-29 04:12:43 | 只看該作者
An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees,ath-maxima problem implies a linear-time algorithm for the . problem of determining whether a given spanning tree of a given undirected graph . with real edge weights is a minimum-weight spanning tree of?..
45#
發(fā)表于 2025-3-29 09:23:24 | 只看該作者
46#
發(fā)表于 2025-3-29 12:28:47 | 只看該作者
https://doi.org/10.1007/978-1-4842-6603-8 and planar networks, first-order properties can be frugally evaluated, that is, with only a bounded number of messages, of size logarithmic in the number of nodes, sent over each link. Moreover, we show that the result carries over for the extension of first-order logic with unary counting.
47#
發(fā)表于 2025-3-29 15:32:52 | 只看該作者
48#
發(fā)表于 2025-3-29 21:38:03 | 只看該作者
49#
發(fā)表于 2025-3-30 00:07:21 | 只看該作者
50#
發(fā)表于 2025-3-30 07:09:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 吉隆县| 克什克腾旗| 金门县| 确山县| 进贤县| 孟连| 上虞市| 通化市| 大渡口区| 方山县| 鹤庆县| 淅川县| 铁岭市| 金沙县| 望城县| 华安县| 筠连县| 延吉市| 屏边| 南召县| 福泉市| 宣化县| 彩票| 潮州市| 清丰县| 浪卡子县| 永丰县| 三门峡市| 读书| 南华县| 密云县| 庄河市| 潜江市| 应城市| 聂拉木县| 讷河市| 万载县| 郧西县| 陆丰市| 美姑县|