找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: SPIR
11#
發(fā)表于 2025-3-23 11:49:17 | 只看該作者
Drawing Planar Graphs on a Curveces are constrained to be on any given curve of . and the edges are drawn as polylines with at most one bend. We prove that every planar graph has a curve embedding which can be computed in linear time. Further we present applications of the concept of curve embedding to upward drawings and point-set constrained drawings.
12#
發(fā)表于 2025-3-23 17:38:41 | 只看該作者
Resource Allocation Problems in Multifiber WDM Tree Networks of accepted requests for given fibers and bounded number . of wavelengths. We study both problems in undirected tree networks .=(.,.) and present approximation algorithms with ratio 1 + 4|E|log|V|/. and 4 for the former and ratio 2.542 for the latter. Our results can be adapted to directed trees as well.
13#
發(fā)表于 2025-3-23 21:00:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:22 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:41 | 只看該作者
17#
發(fā)表于 2025-3-24 13:39:17 | 只看該作者
18#
發(fā)表于 2025-3-24 15:17:48 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:35 | 只看該作者
https://doi.org/10.1007/978-1-4612-3544-6fecting the correctness or performance of the program. Finally, we present several classes of graphs that can be used for watermarking and fingerprinting and analyze their properties (resiliency, data rate, performance, and stealthiness).
20#
發(fā)表于 2025-3-25 00:30:54 | 只看該作者
https://doi.org/10.1007/978-3-030-63930-3eath [2001] and disproving a conjecture of Pemmaraju [1992]. This result provides renewed hope for the positive resolution of a number of open problems regarding queue layouts. In a related result, it is proved that graphs of bounded tree-width have . with linear volume, which represents the largest known class of graphs with such drawings.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 17:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
红安县| 松溪县| 洮南市| 邓州市| 漯河市| 平塘县| 岗巴县| 班玛县| 松桃| 西城区| 北京市| 平塘县| 平顶山市| 衡阳县| 绩溪县| 宁武县| 莎车县| 道孚县| 贵溪市| 泾阳县| 辉县市| 正镶白旗| 昌吉市| 龙江县| 白朗县| 西乌珠穆沁旗| 成安县| 沂源县| 深水埗区| 盐城市| 潢川县| 马龙县| 新晃| 蚌埠市| 宝兴县| 小金县| 阆中市| 万山特区| 繁峙县| 长兴县| 南康市|