找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Braggart
11#
發(fā)表于 2025-3-23 10:21:44 | 只看該作者
,Uniquely Restricted Matchings and?Edge?Colorings, can be partitioned. We provide tight upper bounds in terms of the maximum degree and characterize all extremal graphs. Our constructive proofs yield efficient algorithms to determine the corresponding edge colorings.
12#
發(fā)表于 2025-3-23 15:38:30 | 只看該作者
Clique-Width and Well-Quasi-Ordering of Triangle-Free Graph Classes,he two stubborn cases, namely for the case . by proving that the class of .-free graphs has bounded clique-width and is well-quasi-ordered. Our technique is based on a special decomposition of 3-partite graphs. We also use this technique to completely determine which classes of .-free graphs are well-quasi-ordered.
13#
發(fā)表于 2025-3-23 19:17:51 | 只看該作者
14#
發(fā)表于 2025-3-24 01:04:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:10:01 | 只看該作者
16#
發(fā)表于 2025-3-24 06:51:37 | 只看該作者
https://doi.org/10.1007/978-3-319-71416-5direct consequence of the well-known formula for the number of labeled .-trees, while the lower bound is obtained from an explicit construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most?..
17#
發(fā)表于 2025-3-24 14:08:00 | 只看該作者
18#
發(fā)表于 2025-3-24 17:46:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:53:00 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:46 | 只看該作者
Modern Methods in Analytical Morphologyfor recognizing .-graphs. For the dominating set problem (parameterized by the size of .), we give .- and .-time algorithms on .-graphs and .-graphs, respectively. Our dominating set algorithm for .-graphs also provides .-time algorithms for the independent set and independent dominating set problems on .-graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静安区| 梁平县| 石河子市| 安达市| 宁波市| 玉田县| 永安市| 佛坪县| 天全县| 嘉祥县| 石城县| 深水埗区| 油尖旺区| 元谋县| 桐城市| 横山县| 左云县| 凯里市| 安国市| 肥城市| 诸暨市| 松滋市| 武川县| 绵阳市| 台东县| 阜城县| 岳西县| 太湖县| 鄂伦春自治旗| 卫辉市| 富源县| 台湾省| 科技| 河东区| 盐城市| 砀山县| 屏东市| 广河县| 花莲县| 苗栗市| 乐都县|