找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 全體
51#
發(fā)表于 2025-3-30 11:31:56 | 只看該作者
52#
發(fā)表于 2025-3-30 14:27:37 | 只看該作者
53#
發(fā)表于 2025-3-30 17:37:29 | 只看該作者
https://doi.org/10.1007/978-1-4613-0103-5. such that the broadcasting time remains n if at most . faults are allowed in any step. We prove that k equals either .-2 or .-3. Our method is related to the isoperimetric problem in graphs and can be applied to other networks.
54#
發(fā)表于 2025-3-30 23:15:30 | 只看該作者
On the Nature of Structure and Its Identification, minimum cut splitting measure. A key concept of the proposed structure definition is its implicit determination of an optimum number of clusters..Different applications, which illustrate the usability of the measure and the algorithm, round off the paper (Section 5).
55#
發(fā)表于 2025-3-31 02:37:55 | 只看該作者
56#
發(fā)表于 2025-3-31 07:20:15 | 只看該作者
57#
發(fā)表于 2025-3-31 13:10:40 | 只看該作者
58#
發(fā)表于 2025-3-31 13:23:07 | 只看該作者
Modern High Temperature Science-2 (odd) set existence problems on digraphs. However, for each of the four combinations of these two properties we show that even though the existence problem on digraphs is tractable, the problems of deciding the existence of a set of size exactly ., larger than ., or smaller than ., for a given ., are all NP-complete for undirected graphs.
59#
發(fā)表于 2025-3-31 17:48:31 | 只看該作者
60#
發(fā)表于 2025-4-1 01:33:04 | 只看該作者
Mod-2 Independence and Domination in Graphs,-2 (odd) set existence problems on digraphs. However, for each of the four combinations of these two properties we show that even though the existence problem on digraphs is tractable, the problems of deciding the existence of a set of size exactly ., larger than ., or smaller than ., for a given ., are all NP-complete for undirected graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 鹤壁市| 大新县| 海南省| 舟山市| 阿荣旗| 许昌市| 茶陵县| 湖北省| 乐山市| 邻水| 永善县| 大厂| 木里| 黔江区| 南安市| 称多县| 茂名市| 济阳县| 霍城县| 安远县| 泾川县| 文成县| 札达县| 高平市| 龙山县| 石棉县| 白沙| 江西省| 米易县| 天津市| 依兰县| 舟山市| 弋阳县| 镇江市| 富锦市| 玉山县| 林甸县| 双柏县| 施秉县| 东乡县|