找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 10372|回復: 39
樓主
發(fā)表于 2025-3-21 18:54:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Graph-Based Semi-Supervised Learning
編輯Amarnag Subramanya,Partha Pratim Talukdar
視頻videohttp://file.papertrans.cn/389/388004/388004.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: ;
出版日期Book 2014
版次1
doihttps://doi.org/10.1007/978-3-031-01571-7
isbn_softcover978-3-031-00443-8
isbn_ebook978-3-031-01571-7Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
The information of publication is updating

書目名稱Graph-Based Semi-Supervised Learning影響因子(影響力)




書目名稱Graph-Based Semi-Supervised Learning影響因子(影響力)學科排名




書目名稱Graph-Based Semi-Supervised Learning網(wǎng)絡(luò)公開度




書目名稱Graph-Based Semi-Supervised Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Graph-Based Semi-Supervised Learning被引頻次




書目名稱Graph-Based Semi-Supervised Learning被引頻次學科排名




書目名稱Graph-Based Semi-Supervised Learning年度引用




書目名稱Graph-Based Semi-Supervised Learning年度引用學科排名




書目名稱Graph-Based Semi-Supervised Learning讀者反饋




書目名稱Graph-Based Semi-Supervised Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:53:44 | 只看該作者
Graph Construction,if one is not already available) and (b) inferring the labels on the unlabeled samples in the input or estimating the model parameters. While many algorithms have been developed for label inference [Subramanya and Bilmes, 2010, Zhu et al., 2003], until recently, little attention has been paid to the
地板
發(fā)表于 2025-3-22 04:38:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:15 | 只看該作者
Scalability,be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.
6#
發(fā)表于 2025-3-22 13:36:35 | 只看該作者
Applications,ustive enough to duplicate all the experiments and results. Rather, the goal here is to present the different applications and highlight salient aspects. In each case we briefly describe the task, data set, how the graph is constructed, methods used and results. For more details, readers should look
7#
發(fā)表于 2025-3-22 17:45:42 | 只看該作者
8#
發(fā)表于 2025-3-22 21:32:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:32 | 只看該作者
https://doi.org/10.1007/978-1-4842-6047-0des in the graph followed by the process of inferring the labels for the unlabeled nodes. In this chapter, we first examine the design choices involved in this seed labeling process. We then present a number of approaches for label inference. While a majority of the graph-based inference approaches
10#
發(fā)表于 2025-3-23 09:16:56 | 只看該作者
https://doi.org/10.1007/978-3-030-62351-7be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉尔市| 台北县| 信宜市| 延庆县| 无锡市| 文登市| 剑阁县| 饶河县| 鄯善县| 景德镇市| 康平县| 双城市| 武山县| 大关县| 乌兰察布市| 厦门市| 五指山市| 无为县| 青川县| 临漳县| 万安县| 山丹县| 通州区| 临沂市| 梧州市| 柘荣县| 仪征市| 英德市| 乌恰县| 东宁县| 抚松县| 漯河市| 揭阳市| 峨边| 调兵山市| 淮滨县| 邹平县| 安阳市| 沁阳市| 岗巴县| 香格里拉县|