找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: probiotic
51#
發(fā)表于 2025-3-30 09:00:18 | 只看該作者
https://doi.org/10.1007/978-3-322-88117-5NP-Complete problem. However, several algorithms exist that are fast enough on commonly encountered graphs so as to be practically usable; among them, for more than a decade VF2 has been the state of the art algorithm used to solve this problem and it is still the reference algorithm for many applic
52#
發(fā)表于 2025-3-30 12:31:56 | 只看該作者
53#
發(fā)表于 2025-3-30 19:11:37 | 只看該作者
https://doi.org/10.1007/978-3-540-71453-8using a graph representation of the kites. We propose a similarity measure and a kite identification process that can highlights the preservation state of the kites. We also construct from real images a benchmark of kite graphs that can be used by other researchers.
54#
發(fā)表于 2025-3-30 20:44:16 | 只看該作者
55#
發(fā)表于 2025-3-31 04:46:08 | 只看該作者
https://doi.org/10.1007/978-1-4471-0157-4 directly evaluated. This paper consists of two parts. First, we provide a graph database repository annotated with low level information like graph edit distances and their matching correspondences. Second, we propose a set of performance evaluation metrics to assess the performance of GED methods.
56#
發(fā)表于 2025-3-31 05:00:42 | 只看該作者
https://doi.org/10.1007/978-3-658-19409-3 on diverse graph data sets, we demonstrate that the proposed generalization of Hausdorff edit distance can significantly improve the accuracy of graph classification while maintaining low computational complexity.
57#
發(fā)表于 2025-3-31 10:02:23 | 只看該作者
58#
發(fā)表于 2025-3-31 13:47:47 | 只看該作者
Approximation of Graph Edit Distance in Quadratic Time particular, we introduce several greedy assignment algorithms for approximating GED. In an experimental evaluation we show that there is great potential for further speeding up the GED computation. Moreover, we empirically confirm that the distances obtained by this procedure remain sufficiently accurate for graph based pattern classification.
59#
發(fā)表于 2025-3-31 17:53:02 | 只看該作者
60#
發(fā)表于 2025-4-1 01:17:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 09:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
隆昌县| 济阳县| 徐水县| 平武县| 望城县| 郧西县| 黔西县| 韶山市| 石狮市| 宁都县| 和林格尔县| 临桂县| 宜都市| 鸡东县| 朝阳县| 香格里拉县| 兰溪市| 鄂托克前旗| 吉安市| 高安市| 巴林左旗| 昌平区| 琼中| 巫山县| 东阳市| 千阳县| 滁州市| 祁连县| 婺源县| 曲麻莱县| 双牌县| 滦平县| 博爱县| 彝良县| 镇平县| 五家渠市| 平潭县| 大英县| 九龙城区| 光泽县| 岳池县|