找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: deduce
31#
發(fā)表于 2025-3-26 23:52:22 | 只看該作者
https://doi.org/10.1007/978-3-030-88892-3nt quality. We use GIS data to extract the structure of each river and link this structure to 81 river water stations (that measure both water temperature and discharge). Since the water temperature of a river is strongly dependent on the air temperature, we also include 44 weather stations (which m
32#
發(fā)表于 2025-3-27 02:34:11 | 只看該作者
Quadratic Kernel Learning for?Interpolation Kernel Machine Based Graph Classificationhigh-performance ensemble techniques. Interpolation kernel machines belong to the class of interpolating classifiers and do generalize well. They have been demonstrated to be a good alternative to support vector machine for graph classification. In this work we further improve their performance by c
33#
發(fā)表于 2025-3-27 05:58:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:48:17 | 只看該作者
Graph-Based vs. Vector-Based Classification: A Fair Comparison and applications is crucial. In this paper, we conduct a comprehensive assessment of three commonly used graph-based classifiers across 24 graph datasets (we employ classifiers based on graph matchings, graph kernels, and graph neural networks). Our goal is to find out what primarily affects the pe
35#
發(fā)表于 2025-3-27 16:12:52 | 只看該作者
A Practical Algorithm for?Max-Norm Optimal Binary Labeling of?Graphslski (2020). This method finds, in quadratic time with respect to graph size, a labeling that globally minimizes an objective function based on the .-norm. The method enables global optimization for a novel class of optimization problems, with high relevance in application areas such as image proces
36#
發(fā)表于 2025-3-27 19:25:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:22:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:11:13 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 22:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
佛冈县| 铁力市| 高雄县| 伊川县| 兴和县| 苏州市| 延川县| 乐清市| 新丰县| 张掖市| 德令哈市| 鸡西市| 香格里拉县| 凌海市| 南开区| 丰顺县| 玛曲县| 西和县| 鸡泽县| 道孚县| 章丘市| 光山县| 高要市| 宁晋县| 蒲江县| 兴国县| 日照市| 泾阳县| 二连浩特市| 博客| 镇巴县| 新乡县| 东光县| 乃东县| 滦平县| 鹿泉市| 丰宁| 峨眉山市| 宁波市| 临汾市| 凌海市|