找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: deduce
31#
發(fā)表于 2025-3-26 23:52:22 | 只看該作者
https://doi.org/10.1007/978-3-030-88892-3nt quality. We use GIS data to extract the structure of each river and link this structure to 81 river water stations (that measure both water temperature and discharge). Since the water temperature of a river is strongly dependent on the air temperature, we also include 44 weather stations (which m
32#
發(fā)表于 2025-3-27 02:34:11 | 只看該作者
Quadratic Kernel Learning for?Interpolation Kernel Machine Based Graph Classificationhigh-performance ensemble techniques. Interpolation kernel machines belong to the class of interpolating classifiers and do generalize well. They have been demonstrated to be a good alternative to support vector machine for graph classification. In this work we further improve their performance by c
33#
發(fā)表于 2025-3-27 05:58:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:48:17 | 只看該作者
Graph-Based vs. Vector-Based Classification: A Fair Comparison and applications is crucial. In this paper, we conduct a comprehensive assessment of three commonly used graph-based classifiers across 24 graph datasets (we employ classifiers based on graph matchings, graph kernels, and graph neural networks). Our goal is to find out what primarily affects the pe
35#
發(fā)表于 2025-3-27 16:12:52 | 只看該作者
A Practical Algorithm for?Max-Norm Optimal Binary Labeling of?Graphslski (2020). This method finds, in quadratic time with respect to graph size, a labeling that globally minimizes an objective function based on the .-norm. The method enables global optimization for a novel class of optimization problems, with high relevance in application areas such as image proces
36#
發(fā)表于 2025-3-27 19:25:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:22:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:11:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂温| 镇远县| 北川| 大悟县| 临猗县| 建水县| 麻阳| 永昌县| 永康市| 玉溪市| 海南省| 闽清县| 武邑县| 大竹县| 山阳县| 自贡市| 普定县| 黄山市| 昌乐县| 丰城市| 修文县| 米脂县| 渝北区| 瑞昌市| 铁岭市| 鄂州市| 东乡族自治县| 应城市| 汉阴县| 石河子市| 麻江县| 阳春市| 嵩明县| 修水县| 丰宁| 克山县| 宁波市| 兰溪市| 湘潭市| 成安县| 怀远县|