找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: CLOG
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:20 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:06 | 只看該作者
https://doi.org/10.1007/978-3-662-01997-9lar to a . loop for graph transformation rules by consolidating multiple applications of rules depending on how many rule applications are available at transformation time. TGGs are a well-known technique used to specify bidirectional model transformation, where consistency is described via triple r
25#
發(fā)表于 2025-3-25 20:40:29 | 只看該作者
Polymorphic Sesqui-Pushout Graph Rewritingry for rule composition and decomposition is elaborated on an abstract categorical level. The results are applied to model rule extension and type dependent rule application. This extension mechanism qualifies SqPO – with its very useful copy mechanism for unknown contexts – as a modelling technique
26#
發(fā)表于 2025-3-26 01:04:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:51:14 | 只看該作者
AGREE – Algebraic Graph Rewriting with Controlled Embeddingections with the context graph where it is embedded. But there are applications in which it is desirable to specify different embeddings. For example when cloning an item, there may be a need to handle the original and the copy in different ways. We propose a conservative extension of classical alge
28#
發(fā)表于 2025-3-26 11:03:49 | 只看該作者
Proving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semiringsralize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In?this way we obtain a framework which includes the tropical and arctic type graphs of [.] and a new variant of arithmetic type graphs. These type graphs can be used to assi
29#
發(fā)表于 2025-3-26 12:51:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
司法| 麻城市| 顺平县| 广南县| 平塘县| 苍溪县| 两当县| 宁河县| 台安县| 进贤县| 翁牛特旗| 图们市| 于田县| 涟水县| 来宾市| 隆林| 武义县| 呈贡县| 博兴县| 望城县| 龙川县| 建湖县| 九江县| 武鸣县| 舒城县| 屯昌县| 年辖:市辖区| 屯留县| 保康县| 田林县| 米脂县| 区。| 于田县| 内黄县| 上高县| 历史| 新竹市| 彭阳县| 咸宁市| 西吉县| 孝义市|