找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: CLOG
21#
發(fā)表于 2025-3-25 06:27:40 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:20 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:06 | 只看該作者
https://doi.org/10.1007/978-3-662-01997-9lar to a . loop for graph transformation rules by consolidating multiple applications of rules depending on how many rule applications are available at transformation time. TGGs are a well-known technique used to specify bidirectional model transformation, where consistency is described via triple r
25#
發(fā)表于 2025-3-25 20:40:29 | 只看該作者
Polymorphic Sesqui-Pushout Graph Rewritingry for rule composition and decomposition is elaborated on an abstract categorical level. The results are applied to model rule extension and type dependent rule application. This extension mechanism qualifies SqPO – with its very useful copy mechanism for unknown contexts – as a modelling technique
26#
發(fā)表于 2025-3-26 01:04:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:51:14 | 只看該作者
AGREE – Algebraic Graph Rewriting with Controlled Embeddingections with the context graph where it is embedded. But there are applications in which it is desirable to specify different embeddings. For example when cloning an item, there may be a need to handle the original and the copy in different ways. We propose a conservative extension of classical alge
28#
發(fā)表于 2025-3-26 11:03:49 | 只看該作者
Proving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semiringsralize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In?this way we obtain a framework which includes the tropical and arctic type graphs of [.] and a new variant of arithmetic type graphs. These type graphs can be used to assi
29#
發(fā)表于 2025-3-26 12:51:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南宫市| 松潘县| 阳东县| 宜州市| 淄博市| 南安市| 寻甸| 西安市| 开化县| 兰考县| 仲巴县| 抚顺县| 宜都市| 汝城县| 雷山县| 乌恰县| 永靖县| 青河县| 岑巩县| 福建省| 盐山县| 临城县| 汕尾市| 桐城市| 法库县| 久治县| 拉孜县| 象州县| 乌兰浩特市| 本溪市| 罗江县| 桦川县| 广南县| 新余市| 墨竹工卡县| 利川市| 武隆县| 阿勒泰市| 兴安盟| 宜春市| 郎溪县|