找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Stubborn
31#
發(fā)表于 2025-3-26 21:20:55 | 只看該作者
https://doi.org/10.1007/978-3-658-05931-6ors, forms a Frobenius algebra. This allows the use of string diagrams to model the architecture of basic components and connectors, such that their assembly is freely generated by the algebraic structure. The compositionality of the proposed model is reflected by Structural Operational Semantic rules.
32#
發(fā)表于 2025-3-27 03:07:31 | 只看該作者
33#
發(fā)表于 2025-3-27 09:20:22 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:41 | 只看該作者
https://doi.org/10.1007/978-3-540-47841-6raph-like structures that can be used to implement crossover operators in MDO. We prove basic properties of our construction and show how it can be used to implement a whole set of crossover operators that have been proposed for specific problems and situations on graphs.
35#
發(fā)表于 2025-3-27 14:55:37 | 只看該作者
Graph Rewriting Componentsors, forms a Frobenius algebra. This allows the use of string diagrams to model the architecture of basic components and connectors, such that their assembly is freely generated by the algebraic structure. The compositionality of the proposed model is reflected by Structural Operational Semantic rules.
36#
發(fā)表于 2025-3-27 17:55:22 | 只看該作者
37#
發(fā)表于 2025-3-27 23:49:48 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:16 | 只看該作者
A Generic Construction for?Crossovers of?Graph-Like Structuresraph-like structures that can be used to implement crossover operators in MDO. We prove basic properties of our construction and show how it can be used to implement a whole set of crossover operators that have been proposed for specific problems and situations on graphs.
39#
發(fā)表于 2025-3-28 09:44:44 | 只看該作者
40#
發(fā)表于 2025-3-28 11:29:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林西县| 福州市| 尼玛县| 汶上县| 恩平市| 大余县| 盈江县| 新绛县| 秭归县| 临武县| 安溪县| 偃师市| 缙云县| 汾阳市| 忻州市| 荥经县| 无为县| 乌拉特后旗| 平南县| 鄄城县| 康保县| 潢川县| 奉新县| 威宁| 新津县| 将乐县| 台东县| 尚志市| 四会市| 阿图什市| 沈阳市| 新建县| 两当县| 牙克石市| 炉霍县| 读书| 漳平市| 邵阳市| 恭城| 康乐县| 德昌县|