找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: ARGOT
21#
發(fā)表于 2025-3-25 07:05:37 | 只看該作者
Mit den Mathem?dels durch die Weltle. Our generic parallel BRS algorithm efficiently summarizes large graphs w.r.t. a custom equivalence relation?. defined on the graph’s vertices?.. Moreover, the definition of?. can be chained . times, so the defined equivalence relation becomes a .-bisimulation. We evaluate the runtime and memory
22#
發(fā)表于 2025-3-25 09:09:40 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:29 | 只看該作者
24#
發(fā)表于 2025-3-25 19:45:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:43 | 只看該作者
26#
發(fā)表于 2025-3-26 03:19:58 | 只看該作者
27#
發(fā)表于 2025-3-26 07:12:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:25:31 | 只看該作者
Termination of?Graph Transformation Systems Using Weighted Subgraph Countingrphisms targeting them. The method is well-defined in rm-adhesive quasitoposes (which include toposes and therefore many graph categories of interest), and is applicable to non-linear rules. The method is also defined for other frameworks, including DPO and SqPO, because we have previously shown tha
29#
發(fā)表于 2025-3-26 15:04:34 | 只看該作者
Fuzzy Presheaves are Quasitoposest the metatheory of algebraic graph rewriting. In this paper we propose and motivate the notion of ., which generalises fuzzy sets and fuzzy graphs. We prove that fuzzy presheaves are rm-adhesive quasitoposes, proving our recent conjecture for fuzzy graphs. Furthermore, we show that simple fuzzy gra
30#
發(fā)表于 2025-3-26 18:56:25 | 只看該作者
Mechanised DPO Theory: Uniqueness of?Derivations and?Church-Rosser Theorem to graph transformation: the uniqueness of derivations up to isomorphism and the so-called Church-Rosser theorem. The first result involves proving the uniqueness of pushout complements, first established by Rosen in 1975. The second result formalises Ehrig’s and Kreowski’s proof of 1976 that paral
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天门市| 仁布县| 柳江县| 新疆| 南乐县| 九江市| 上饶县| 金平| 东辽县| 原平市| 娄底市| 两当县| 临高县| 当涂县| 连城县| 德昌县| 怀柔区| 微博| 磴口县| 荔波县| 台北县| 南靖县| 安义县| 固安县| 如东县| 望奎县| 永宁县| 江孜县| 和硕县| 潼关县| 新巴尔虎右旗| 鄯善县| 图们市| 澎湖县| 垫江县| 兴安县| 兰坪| 乃东县| 普陀区| 塔城市| 东海县|