找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 不服從
21#
發(fā)表于 2025-3-25 05:29:24 | 只看該作者
https://doi.org/10.1007/978-3-658-15658-9 For .?=?1, this gives the usual notion of matching in graphs, and for general .?≥?1, distance-. matchings were called . by Stockmeyer and Vazirani. The special case .?=?2 has been studied under the names . (i.e., a matching which forms an induced subgraph in .) by Cameron and . by Golumbic and Lask
22#
發(fā)表于 2025-3-25 10:46:03 | 只看該作者
https://doi.org/10.1007/978-3-662-69201-1write .?∈?Ψ(.), if . is a maximum stable set of the subgraph induced by .?∪?.(.), where .(.) is the neighborhood of .,[11]. Nemhauser and Trotter Jr. proved that any .?∈?Ψ(.) is a subset of a maximum stable set of .,[19]..In this paper we demonstrate that if .?∈?Ψ(.), the subgraph . induced by .?∪?.
23#
發(fā)表于 2025-3-25 14:01:11 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:51 | 只看該作者
https://doi.org/10.1007/978-3-658-01900-6status of the problem is not known if the input is restricted to graphs with no cycles of length 4. We conjecture that the problem is polynomial if the input graph does not contain cycles of length 4 and 6, and prove several theorems supporting our conjecture.
25#
發(fā)表于 2025-3-25 22:05:14 | 只看該作者
26#
發(fā)表于 2025-3-26 02:25:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:53 | 只看該作者
https://doi.org/10.1007/978-3-658-40421-5w some known results and prove new ones. In particular, we consider a family of transformations of an edge-coloured multigraph . into an ordinary graph that allow us to check the existence of PC cycles and PC (.,.)-paths in . and, if they exist, to find shortest ones among them. We raise a problem o
29#
發(fā)表于 2025-3-26 14:44:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:28:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
容城县| 古丈县| 峨眉山市| 壤塘县| 罗源县| 响水县| 浏阳市| 巩留县| 岳普湖县| 乾安县| 凌源市| 出国| 神池县| 鲜城| 竹溪县| 岱山县| 山东| 泰和县| 敖汉旗| 喀喇| 永福县| 常山县| 花垣县| 互助| 潮安县| 五台县| 常山县| 新化县| 灵武市| 丰城市| 洪湖市| 台山市| 淮阳县| 多伦县| 原平市| 阳朔县| 西充县| 勐海县| 榆林市| 黔西县| 城口县|