找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 10:00:26 | 只看該作者
https://doi.org/10.1057/9781403973528In this chapter, we find a type of subgraph of a graph . where removal from . separates some vertices from others in .. This type of subgraph is known as cut set of .. Cut set has a great application in communication and transportation networks.
12#
發(fā)表于 2025-3-23 17:13:57 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:11 | 只看該作者
Alfred Bellebaum,Robert HettlageDefinition: A graph is called a plane graph
14#
發(fā)表于 2025-3-23 23:23:52 | 只看該作者
15#
發(fā)表于 2025-3-24 03:47:10 | 只看該作者
Subgraphs, Paths, and Connected Graphs,: Let . be a graph with vertex set .(.) and edge set .(.), and similarly let . be a graph with vertex set .(.) and edge set .(.). Then, we say that . is a subgraph of . if .(.)???.(.) and .(.)???.(.). In such a case, we also say that . is a supergraph of ..
16#
發(fā)表于 2025-3-24 07:55:12 | 只看該作者
Euler Graphs and Hamiltonian Graphs,: A trail in . is said to be an Euler Trail if it includes all the edges of graph .. Thus a trail is Euler if each edge of . is in the trail exactly once.
17#
發(fā)表于 2025-3-24 12:49:29 | 只看該作者
Trees and Fundamental Circuits,: A graph with no cycle is acyclic. .: A tree is a connected acyclic graph. .: A leaf is a vertex of degree 1 (Pendant vertex). A leaf node has no children nodes. .: The root node of a tree is the node with no parents. There is at most one root node in a rooted tree.
18#
發(fā)表于 2025-3-24 16:26:55 | 只看該作者
Algorithms on Graphs,: A weighted network (., ., .) consists of a node set ., an edge set ., and the weight set . specifying weights . for the edges (., .)?∈?..
19#
發(fā)表于 2025-3-24 21:16:28 | 只看該作者
Matrix Representation on Graphs,Let us consider a graph . in Fig.?. with four vertices and five edges . Any subgraph . of . can be represented by a 5-tuple.
20#
發(fā)表于 2025-3-24 23:21:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰浩特市| 郧西县| 唐海县| 武义县| 米泉市| 鄂尔多斯市| 定南县| 钟山县| 阿拉善右旗| 白朗县| 靖安县| 青河县| 涿鹿县| 米泉市| 师宗县| 东阿县| 丽江市| 全南县| 西充县| 清流县| 康定县| 凉山| 临沭县| 鸡东县| 香港 | 杭州市| 宣化县| 禄丰县| 长白| 友谊县| 甘德县| 舒兰市| 珠海市| 唐山市| 临安市| 高阳县| 凤阳县| 彝良县| 郧西县| 利川市| 青川县|