找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fasten
21#
發(fā)表于 2025-3-25 06:51:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:59:24 | 只看該作者
https://doi.org/10.1007/978-1-349-07323-8We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
24#
發(fā)表于 2025-3-25 19:14:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:44 | 只看該作者
Minerals as Advanced Materials IWe present a conjecture and eight open questions in areas of coloring graphs on the plane, on nonplanar surfaces, and on multiple planes. These unsolved problems relate to classical graph coloring and to list coloring for general embedded graphs and also for planar great-circle graphs and for locally planar graphs.
26#
發(fā)表于 2025-3-26 02:18:02 | 只看該作者
Minerals as Advanced Materials IIIn this chapter, we explore the history and the status of the Zarankiewicz crossing number conjecture and the Hill crossing number conjecture, on drawing complete bipartite and complete graphs in the plane with a minimum number of edge crossings. We discuss analogous problems on other surfaces and in different models of drawing.
27#
發(fā)表于 2025-3-26 07:33:09 | 只看該作者
https://doi.org/10.1007/978-1-4684-6638-6For a graph . of order . and a parameter ?(.), if ?(.) ≤ .. for some rational number ., where 0 < . < 1, then we refer to this upper bound on ?(.) as an .-bound on ?(.). In this chapter, we present over twenty .-bound conjectures on domination type parameters.
28#
發(fā)表于 2025-3-26 09:05:59 | 只看該作者
Conjectures on Cops and Robbers,We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
29#
發(fā)表于 2025-3-26 13:00:20 | 只看該作者
,Chvátal’s ,,-Tough Conjecture,In 1973, Chvátal introduced the concept of “tough graphs” and conjectured that graphs with sufficiently high toughness are hamiltonian. Here we look at some personal perspectives of this conjecture, both those of Chvátal and the author. Furthermore, we present the history of the conjecture and its current status.
30#
發(fā)表于 2025-3-26 19:18:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库车县| 于田县| 长治县| 高台县| 个旧市| 南平市| 泾阳县| 墨竹工卡县| 宁晋县| 黎城县| 稻城县| 师宗县| 饶平县| 灵山县| 卢氏县| 铜山县| 汕头市| 开鲁县| 湖南省| 新平| 巴中市| 宜丰县| 中超| 芜湖县| 和田市| 维西| 青浦区| 利津县| 旬邑县| 安泽县| 兖州市| 读书| SHOW| 阿鲁科尔沁旗| 佛坪县| 吴川市| 宜阳县| 高唐县| 林州市| 梨树县| 南昌县|