找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fasten
21#
發(fā)表于 2025-3-25 06:51:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:59:24 | 只看該作者
https://doi.org/10.1007/978-1-349-07323-8We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
24#
發(fā)表于 2025-3-25 19:14:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:44 | 只看該作者
Minerals as Advanced Materials IWe present a conjecture and eight open questions in areas of coloring graphs on the plane, on nonplanar surfaces, and on multiple planes. These unsolved problems relate to classical graph coloring and to list coloring for general embedded graphs and also for planar great-circle graphs and for locally planar graphs.
26#
發(fā)表于 2025-3-26 02:18:02 | 只看該作者
Minerals as Advanced Materials IIIn this chapter, we explore the history and the status of the Zarankiewicz crossing number conjecture and the Hill crossing number conjecture, on drawing complete bipartite and complete graphs in the plane with a minimum number of edge crossings. We discuss analogous problems on other surfaces and in different models of drawing.
27#
發(fā)表于 2025-3-26 07:33:09 | 只看該作者
https://doi.org/10.1007/978-1-4684-6638-6For a graph . of order . and a parameter ?(.), if ?(.) ≤ .. for some rational number ., where 0 < . < 1, then we refer to this upper bound on ?(.) as an .-bound on ?(.). In this chapter, we present over twenty .-bound conjectures on domination type parameters.
28#
發(fā)表于 2025-3-26 09:05:59 | 只看該作者
Conjectures on Cops and Robbers,We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
29#
發(fā)表于 2025-3-26 13:00:20 | 只看該作者
,Chvátal’s ,,-Tough Conjecture,In 1973, Chvátal introduced the concept of “tough graphs” and conjectured that graphs with sufficiently high toughness are hamiltonian. Here we look at some personal perspectives of this conjecture, both those of Chvátal and the author. Furthermore, we present the history of the conjecture and its current status.
30#
發(fā)表于 2025-3-26 19:18:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 淮安市| 子洲县| 绿春县| 平泉县| 鹤峰县| 贺州市| 繁昌县| 临西县| 太原市| 涞水县| 湾仔区| 古浪县| 五家渠市| 洱源县| 和林格尔县| 鲁山县| 南木林县| 彭泽县| 汉源县| 谷城县| 旬邑县| 铜川市| 临猗县| 大石桥市| 洪雅县| 措勤县| 鞍山市| 那坡县| 岳池县| 盐津县| 汉阴县| 滦南县| 邯郸县| 峨眉山市| 台中市| 台北县| 台南县| 定州市| 滦南县| 囊谦县|