找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 葉子
21#
發(fā)表于 2025-3-25 04:32:28 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:51 | 只看該作者
Graph Minors,eorems that mathematics has to offer: .. This ., inconspicuous though it may look at first glance, has made a fundamental impact both outside graph theory and within. Its proof, due to Neil Robertson and Paul Seymour, takes well over 500 pages.
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
Graph Theory978-3-662-53622-3Series ISSN 0072-5285 Series E-ISSN 2197-5612
24#
發(fā)表于 2025-3-25 19:31:51 | 只看該作者
Matching Covering and Packing,p all its vertices in this way? If not, how can we be sure that this is indeed impossible? Somewhat surprisingly, this basic problem does not only lie at the heart of numerous applications, it also gives rise to some rather interesting graph theory.
25#
發(fā)表于 2025-3-25 22:18:47 | 只看該作者
Connectivity, all it says is that we need at least . vertices to disconnect it. The following definition—which, incidentally, implies the one above—might have been more descriptive: ‘a(chǎn) graph is . if any two of its vertices can be joined by . independent paths’.
26#
發(fā)表于 2025-3-26 04:11:09 | 只看該作者
Colouring,scheduled for committee meetings of a parliament if every committee intends to meet for one day and some members of parliament serve on several committees? How can we find a school timetable of minimum total length, based on the information of how often each teacher has to teach each class?
27#
發(fā)表于 2025-3-26 06:12:08 | 只看該作者
28#
發(fā)表于 2025-3-26 10:02:12 | 只看該作者
Infinite Graphs,, but then moves on in several directions to display both the breadth and some of the depth that this field has to offer. Our overall theme will be to highlight the typical kinds of phenomena that will always appear when graphs are infinite, and to show how they can lead to deep and fascinating prob
29#
發(fā)表于 2025-3-26 15:22:03 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍林郭勒市| 宁乡县| 微博| 来凤县| 新昌县| 东宁县| 土默特右旗| 青冈县| 洛隆县| 色达县| 全椒县| 泽普县| 西林县| 宝清县| 简阳市| 勃利县| 遂川县| 华坪县| 高碑店市| 旺苍县| 大庆市| 寿光市| 延边| 浮梁县| 政和县| 共和县| 苏尼特右旗| 武功县| 张家港市| 建宁县| 浦县| 綦江县| 龙门县| 常宁市| 松潘县| 遵义市| 合阳县| 林芝县| 澄江县| 娱乐| 海林市|