找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 22:02:36 | 只看該作者
32#
發(fā)表于 2025-3-27 01:34:04 | 只看該作者
33#
發(fā)表于 2025-3-27 06:52:58 | 只看該作者
Conceptual Graphs for Formally Managing and Discovering Complementary Competences,ovry of competences. The foundings of the proposals that are described here after are a formal representation of competences using conceptual graphs and the use of operations on conceptual graphs for competence discovery and their possible composition.
34#
發(fā)表于 2025-3-27 12:29:33 | 只看該作者
https://doi.org/10.1057/9780230599048te-of-the-art in terms of scalability. We used a large LUBM dataset with ten billion triples, and our tests show that RDF-SQ is significantly faster and more efficient than the competitors in almost all cases.
35#
發(fā)表于 2025-3-27 17:00:09 | 只看該作者
https://doi.org/10.1007/978-3-030-52474-6. Extensive experiments are conducted to assess the recommendation performance in term of . and .. Experimental results show that the REN is a good recommendation resource with high quality of related entities. For recommending related entity, the proposed REN-based method achieves good performance
36#
發(fā)表于 2025-3-27 20:20:01 | 只看該作者
RDF-SQ: Mixing Parallel and Sequential Computation for Top-Down OWL RL Inference,te-of-the-art in terms of scalability. We used a large LUBM dataset with ten billion triples, and our tests show that RDF-SQ is significantly faster and more efficient than the competitors in almost all cases.
37#
發(fā)表于 2025-3-28 00:43:32 | 只看該作者
Bring User Interest to Related Entity Recommendation,. Extensive experiments are conducted to assess the recommendation performance in term of . and .. Experimental results show that the REN is a good recommendation resource with high quality of related entities. For recommending related entity, the proposed REN-based method achieves good performance
38#
發(fā)表于 2025-3-28 02:53:58 | 只看該作者
Graph Structures for Knowledge Representation and Reasoning
39#
發(fā)表于 2025-3-28 07:13:18 | 只看該作者
40#
發(fā)表于 2025-3-28 10:24:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁连县| 来安县| 兴安县| 吉木萨尔县| 新源县| 青田县| 工布江达县| 肥东县| 合肥市| 额尔古纳市| 贵州省| 凯里市| 马山县| 双流县| 红安县| 宁波市| 景宁| 巴林左旗| 东山县| 都匀市| 上高县| 泗水县| 梨树县| 永济市| 郧西县| 旅游| 昆明市| 凌海市| 宣汉县| 冀州市| 德安县| 达孜县| 柏乡县| 秦皇岛市| 和顺县| 南和县| 甘谷县| 民和| 米林县| 广水市| 铜山县|