找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 16674|回復: 55
樓主
發(fā)表于 2025-3-21 17:48:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications
編輯Lingfei Wu,Peng Cui,Liang Zhao
視頻videohttp://file.papertrans.cn/388/387931/387931.mp4
圖書封面Titlebook: ;
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-981-16-6054-2
isbn_softcover978-981-16-6056-6
isbn_ebook978-981-16-6054-2
The information of publication is updating

書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications影響因子(影響力)




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications影響因子(影響力)學科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications網(wǎng)絡公開度




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications網(wǎng)絡公開度學科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications被引頻次




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications被引頻次學科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications年度引用




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications年度引用學科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications讀者反饋




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:05:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:39:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:33 | 只看該作者
The Expressive Power of Graph Neural Networkshniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.
5#
發(fā)表于 2025-3-22 11:44:44 | 只看該作者
6#
發(fā)表于 2025-3-22 14:27:23 | 只看該作者
Graph Neural Networks: Graph Transformationegories, namely node-level transformation, edge-level transformation, node-edge co-transformation, as well as other graph-involved transformations (e.g., sequenceto- graph transformation and context-to-graph transformation), which are discussed in Section 12.2 to Section 12.5, respectively. In each
7#
發(fā)表于 2025-3-22 18:36:06 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:06 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:31 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:30 | 只看該作者
https://doi.org/10.1007/978-3-662-36442-0hniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东光县| 周宁县| 临安市| 安溪县| 昌乐县| 新龙县| 永吉县| 舞钢市| 越西县| 呈贡县| 于田县| 昆明市| 大邑县| 莱阳市| 响水县| 米林县| 平和县| 沾益县| 高青县| 元谋县| 临清市| 香港 | 睢宁县| 宁城县| 赫章县| 阜平县| 喀喇| 闽侯县| 广汉市| 靖宇县| 汉寿县| 资中县| 焉耆| 藁城市| 泰来县| 五莲县| 申扎县| 桐城市| 洪泽县| 巴彦淖尔市| 大埔区|