找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Racket
31#
發(fā)表于 2025-3-26 21:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-93257-1o all the others. There is also the question of how to fit model parameters to match a given graph. What we would like is a tradeoff between parsimony (few model parameters), realism (matching most graph patterns, if not all), and efficiency (in parameter fitting and graph generation speed). In this
32#
發(fā)表于 2025-3-27 02:02:19 | 只看該作者
33#
發(fā)表于 2025-3-27 08:42:30 | 只看該作者
https://doi.org/10.1007/978-3-322-92875-7s believed to exist) in many real-world graphs, especially social networks: Moody [212] finds groupings based on race and age in a network of friendships in one American school;, Schwartz and Wood [244] group people with shared interests from email logs; Borgs et al. [57] find communities from “cros
34#
發(fā)表于 2025-3-27 13:00:08 | 只看該作者
https://doi.org/10.1007/978-3-642-93257-1 (few model parameters), realism (matching most graph patterns, if not all), and efficiency (in parameter fitting and graph generation speed). In this section, we present the . generator, which attempts to address all of these concerns.
35#
發(fā)表于 2025-3-27 15:13:08 | 只看該作者
https://doi.org/10.1007/978-3-8348-9084-9 small initial matrix is recursively “multiplied” with itself to yield large graph topologies. The mathematical simplicity of this generative model yields simple closed-form expressions for several measures of interest, such as degree distributions and diameters, thus enabling ease of analysis and parameter-fitting.
36#
發(fā)表于 2025-3-27 20:14:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:59 | 只看該作者
39#
發(fā)表于 2025-3-28 09:46:42 | 只看該作者
40#
發(fā)表于 2025-3-28 14:28:36 | 只看該作者
Synthesis Lectures on Data Mining and Knowledge Discovery387930.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南陵县| 始兴县| 吐鲁番市| 承德县| 阳西县| 如皋市| 越西县| 金阳县| 吐鲁番市| 平山县| 苍南县| 安阳县| 宝鸡市| 福贡县| 车险| 石柱| 青龙| 雷州市| 嵊泗县| 策勒县| 兴业县| 滨海县| 乌苏市| 綦江县| 兴化市| 安岳县| 翼城县| 察哈| 宿州市| 凤山县| 台中县| 湘乡市| 泽库县| 胶州市| 鲜城| 邵阳县| 郸城县| 扶绥县| 南部县| 定日县| 金塔县|