找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Racket
31#
發(fā)表于 2025-3-26 21:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-93257-1o all the others. There is also the question of how to fit model parameters to match a given graph. What we would like is a tradeoff between parsimony (few model parameters), realism (matching most graph patterns, if not all), and efficiency (in parameter fitting and graph generation speed). In this
32#
發(fā)表于 2025-3-27 02:02:19 | 只看該作者
33#
發(fā)表于 2025-3-27 08:42:30 | 只看該作者
https://doi.org/10.1007/978-3-322-92875-7s believed to exist) in many real-world graphs, especially social networks: Moody [212] finds groupings based on race and age in a network of friendships in one American school;, Schwartz and Wood [244] group people with shared interests from email logs; Borgs et al. [57] find communities from “cros
34#
發(fā)表于 2025-3-27 13:00:08 | 只看該作者
https://doi.org/10.1007/978-3-642-93257-1 (few model parameters), realism (matching most graph patterns, if not all), and efficiency (in parameter fitting and graph generation speed). In this section, we present the . generator, which attempts to address all of these concerns.
35#
發(fā)表于 2025-3-27 15:13:08 | 只看該作者
https://doi.org/10.1007/978-3-8348-9084-9 small initial matrix is recursively “multiplied” with itself to yield large graph topologies. The mathematical simplicity of this generative model yields simple closed-form expressions for several measures of interest, such as degree distributions and diameters, thus enabling ease of analysis and parameter-fitting.
36#
發(fā)表于 2025-3-27 20:14:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:59 | 只看該作者
39#
發(fā)表于 2025-3-28 09:46:42 | 只看該作者
40#
發(fā)表于 2025-3-28 14:28:36 | 只看該作者
Synthesis Lectures on Data Mining and Knowledge Discovery387930.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冕宁县| 永修县| 商南县| 上蔡县| 平阴县| 三门峡市| 盱眙县| 石台县| 曲沃县| 成安县| 禄劝| 吴桥县| 利川市| 托里县| 扎赉特旗| 长岛县| 双鸭山市| 成武县| 始兴县| 上思县| 大渡口区| 谢通门县| 漳州市| 龙陵县| 久治县| 石林| 巴里| 漾濞| 罗江县| 扶绥县| 崇仁县| 蓬莱市| 木兰县| 乌鲁木齐县| 吴忠市| 灌阳县| 镇赉县| 台湾省| 三明市| 汕尾市| 香格里拉县|