找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 13701|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:46:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graph Learning for Fashion Compatibility Modeling
編輯Weili Guan,Xuemeng Song,Liqiang Nie
視頻videohttp://file.papertrans.cn/388/387928/387928.mp4
叢書名稱Synthesis Lectures on Information Concepts, Retrieval, and Services
圖書封面Titlebook: ;
出版日期Book 20222nd edition
版次2
doihttps://doi.org/10.1007/978-3-031-18817-6
isbn_softcover978-3-031-18819-0
isbn_ebook978-3-031-18817-6Series ISSN 1947-945X Series E-ISSN 1947-9468
issn_series 1947-945X
The information of publication is updating

書目名稱Graph Learning for Fashion Compatibility Modeling影響因子(影響力)




書目名稱Graph Learning for Fashion Compatibility Modeling影響因子(影響力)學(xué)科排名




書目名稱Graph Learning for Fashion Compatibility Modeling網(wǎng)絡(luò)公開度




書目名稱Graph Learning for Fashion Compatibility Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph Learning for Fashion Compatibility Modeling被引頻次




書目名稱Graph Learning for Fashion Compatibility Modeling被引頻次學(xué)科排名




書目名稱Graph Learning for Fashion Compatibility Modeling年度引用




書目名稱Graph Learning for Fashion Compatibility Modeling年度引用學(xué)科排名




書目名稱Graph Learning for Fashion Compatibility Modeling讀者反饋




書目名稱Graph Learning for Fashion Compatibility Modeling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:28 | 只看該作者
Research Frontiers,ond these two methods that focus on the coarse-grained compatibility modeling, we then devised an unsupervised disentangled graph learning method to uncover the hidden factors affecting the overall compatibility and fulfill the fine-grained compatibility modeling. Moreover, to fully utilize item-att
板凳
發(fā)表于 2025-3-22 01:42:43 | 只看該作者
https://doi.org/10.1007/978-3-322-87780-2ond these two methods that focus on the coarse-grained compatibility modeling, we then devised an unsupervised disentangled graph learning method to uncover the hidden factors affecting the overall compatibility and fulfill the fine-grained compatibility modeling. Moreover, to fully utilize item-att
地板
發(fā)表于 2025-3-22 06:53:33 | 只看該作者
5#
發(fā)表于 2025-3-22 10:22:40 | 只看該作者
Correlation-Oriented Graph Learning for OCM,arning technique. Existing graph learning-based methods focus on exploring the visual modality of fashion items, and seldom investigate an item’s textual aspect, i.e., the textual description. In fact, textual descriptions of fashion items usually contain key features, which benefit item representat
6#
發(fā)表于 2025-3-22 13:14:26 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:34 | 只看該作者
Unsupervised Disentangled Graph Learning for OCM,he outfit compatibility based on the single latent compatibility space. The outfit compatibility is essentially affected by multiple complementary hidden factors, such as the color, style, shape, and material. Therefore, we argue that previous methods can only achieve the suboptimal solution, as it
8#
發(fā)表于 2025-3-23 00:11:56 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:16 | 只看該作者
,Heterogeneous Graph Learning for?Personalized OCM,ndard. In fact, there may be some subjective factors influencing the outfit compatibility evaluation, namely, for the same garment, different users may have different evaluations. In other words, different people usually have different preferences to make their personal ideal outfits, which may be c
10#
發(fā)表于 2025-3-23 09:12:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台山市| 来安县| 盈江县| 灯塔市| 城口县| 林口县| 望城县| 百色市| 伊川县| 双鸭山市| 罗田县| 鄂州市| 凤台县| 兰西县| 彭泽县| 烟台市| 金寨县| 金坛市| 鄂尔多斯市| 万宁市| 辽源市| 堆龙德庆县| 安国市| 长宁县| 长海县| 尚义县| 庆元县| 剑川县| 丹阳市| 凤山县| 南丹县| 岳阳市| 探索| 健康| 萨嘎县| 英吉沙县| 康保县| 玛纳斯县| 阿克陶县| 苗栗市| 孟连|