找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 11602|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:14:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graph Embedding for Pattern Analysis
編輯Yun Fu,Yunqian Ma
視頻videohttp://file.papertrans.cn/388/387923/387923.mp4
圖書封面Titlebook: ;
出版日期Book 2013
版次1
doihttps://doi.org/10.1007/978-1-4614-4457-2
isbn_softcover978-1-4899-9062-4
isbn_ebook978-1-4614-4457-2
The information of publication is updating

書目名稱Graph Embedding for Pattern Analysis影響因子(影響力)




書目名稱Graph Embedding for Pattern Analysis影響因子(影響力)學(xué)科排名




書目名稱Graph Embedding for Pattern Analysis網(wǎng)絡(luò)公開度




書目名稱Graph Embedding for Pattern Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph Embedding for Pattern Analysis被引頻次




書目名稱Graph Embedding for Pattern Analysis被引頻次學(xué)科排名




書目名稱Graph Embedding for Pattern Analysis年度引用




書目名稱Graph Embedding for Pattern Analysis年度引用學(xué)科排名




書目名稱Graph Embedding for Pattern Analysis讀者反饋




書目名稱Graph Embedding for Pattern Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:11 | 只看該作者
Migration, Bildung und SpracherwerbLLE uses linear coefficients, which reconstruct a given example by its neighbors, to represent the local geometry, and then seeks a low-dimensional embedding, in which these coefficients are still suitable for reconstruction. ISOMAP preserves global geodesic distances of all the pairs of examples.
板凳
發(fā)表于 2025-3-22 03:19:39 | 只看該作者
https://doi.org/10.1007/978-3-476-04372-6ed algorithm, aims to maximize the inter-class scatter and at the same time minimize the intra-class scatter. Due to utilization of label information, LDA is experimentally reported to outperform PCA for face recognition, when sufficient labeled face images are provided [2].
地板
發(fā)表于 2025-3-22 08:13:53 | 只看該作者
5#
發(fā)表于 2025-3-22 12:09:32 | 只看該作者
Feature Grouping and Selection Over an Undirected Graph,atures lasso tends to only select one of those features resulting in suboptimal performance [25]. Several methods have been proposed to address this issue in the literature. Shen and Ye [15] introduce an adaptive model selection procedure that corrects the estimation bias through a data-driven penalty based on generalized degrees of freedom.
6#
發(fā)表于 2025-3-22 14:12:53 | 只看該作者
7#
發(fā)表于 2025-3-22 21:06:02 | 只看該作者
A Flexible and Effective Linearization Method for Subspace Learning,ed algorithm, aims to maximize the inter-class scatter and at the same time minimize the intra-class scatter. Due to utilization of label information, LDA is experimentally reported to outperform PCA for face recognition, when sufficient labeled face images are provided [2].
8#
發(fā)表于 2025-3-22 21:38:40 | 只看該作者
Graph Embedding for Speaker Recognition,sures speaker similarity. Using speaker comparison, other applications can be implemented—speaker clustering (grouping similar speakers in a corpus), speaker verification (verifying a claim of identity), speaker identification (identifying a speaker out of a list of potential candidates), and speaker retrieval (finding matches to a query set).
9#
發(fā)表于 2025-3-23 05:22:05 | 只看該作者
https://doi.org/10.1007/978-3-658-08301-4ble to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant.
10#
發(fā)表于 2025-3-23 05:38:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
改则县| 桓台县| 涟水县| 美姑县| 沙雅县| 南华县| 萝北县| 龙江县| 东港市| 耿马| 双牌县| 久治县| 榆林市| 工布江达县| 叶城县| 青龙| 奉节县| 全州县| 上饶市| 历史| 巴塘县| 左贡县| 资中县| 苏尼特右旗| 宜兰县| 资中县| 中阳县| 乐业县| 西吉县| 文登市| 昌江| 丰县| 东平县| 衡南县| 温泉县| 贵阳市| 且末县| 毕节市| 金沙县| 珠海市| 揭阳市|