找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Addendum
51#
發(fā)表于 2025-3-30 10:02:00 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is be
52#
發(fā)表于 2025-3-30 15:17:42 | 只看該作者
53#
發(fā)表于 2025-3-30 19:36:07 | 只看該作者
https://doi.org/10.1007/978-3-031-19153-4tic disjoint rectangles parallel to the .-plane, and the edges are unobstructed .-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of ..
54#
發(fā)表于 2025-3-30 22:37:41 | 只看該作者
55#
發(fā)表于 2025-3-31 04:24:19 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is best possible for infinitely many values of ..
56#
發(fā)表于 2025-3-31 06:14:56 | 只看該作者
57#
發(fā)表于 2025-3-31 09:52:26 | 只看該作者
Many Touchings Force Many Crossingsdoes not get from one side of the second curve to its other side. Otherwise, if the two curves intersect, they are said to form a . pair. Let . and . denote the number of touching pairs and crossing pairs, respectively. We prove that ., provided that .. Apart from the values of the constants, this result is best possible.
58#
發(fā)表于 2025-3-31 15:13:36 | 只看該作者
59#
發(fā)表于 2025-3-31 19:44:51 | 只看該作者
60#
發(fā)表于 2025-4-1 01:30:08 | 只看該作者
Arrangements of Pseudocircles: Triangles and Drawings pairwise intersecting arrangements of pseudocircles, we show that .. This is essentially best possible because families of pairwise intersecting arrangements of . pseudocircles with . as . are known..The paper contains many drawings of arrangements of pseudocircles and a good fraction of these draw
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三江| 乌拉特前旗| 衡南县| 黔东| 安远县| 邛崃市| 黄平县| 淮北市| 武乡县| 辽中县| 兰州市| 沂源县| 宕昌县| 盐边县| 贵定县| 满洲里市| 清水县| 巴东县| 若羌县| 青州市| 哈巴河县| 长乐市| 井研县| 深水埗区| 丰宁| 黑龙江省| 巫溪县| 北海市| 金塔县| 肥乡县| 罗田县| 平果县| 巧家县| 宜君县| 泊头市| 浙江省| 枣庄市| 溆浦县| 松潘县| 南江县| 全椒县|