找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Addendum
51#
發(fā)表于 2025-3-30 10:02:00 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is be
52#
發(fā)表于 2025-3-30 15:17:42 | 只看該作者
53#
發(fā)表于 2025-3-30 19:36:07 | 只看該作者
https://doi.org/10.1007/978-3-031-19153-4tic disjoint rectangles parallel to the .-plane, and the edges are unobstructed .-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of ..
54#
發(fā)表于 2025-3-30 22:37:41 | 只看該作者
55#
發(fā)表于 2025-3-31 04:24:19 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is best possible for infinitely many values of ..
56#
發(fā)表于 2025-3-31 06:14:56 | 只看該作者
57#
發(fā)表于 2025-3-31 09:52:26 | 只看該作者
Many Touchings Force Many Crossingsdoes not get from one side of the second curve to its other side. Otherwise, if the two curves intersect, they are said to form a . pair. Let . and . denote the number of touching pairs and crossing pairs, respectively. We prove that ., provided that .. Apart from the values of the constants, this result is best possible.
58#
發(fā)表于 2025-3-31 15:13:36 | 只看該作者
59#
發(fā)表于 2025-3-31 19:44:51 | 只看該作者
60#
發(fā)表于 2025-4-1 01:30:08 | 只看該作者
Arrangements of Pseudocircles: Triangles and Drawings pairwise intersecting arrangements of pseudocircles, we show that .. This is essentially best possible because families of pairwise intersecting arrangements of . pseudocircles with . as . are known..The paper contains many drawings of arrangements of pseudocircles and a good fraction of these draw
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 宜宾县| 安乡县| 韶关市| 隆德县| 内乡县| 洛南县| 西昌市| 安龙县| 红安县| 长葛市| 长春市| 常德市| 南漳县| 旌德县| 应用必备| 云和县| 霍城县| 蓝山县| 崇礼县| 聂拉木县| 黄石市| 河西区| 荥经县| 法库县| 盐津县| 桐乡市| 平昌县| 疏勒县| 淮北市| 来宾市| 卓尼县| 休宁县| 乐清市| 北碚区| 山东省| 隆子县| 迁安市| 繁昌县| 鸡东县| 双鸭山市|